首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been developed for the determination of trace rare earth elements (REEs) in water samples based on preconcentration with a microcolumn packed with multiwalled carbon nanotubes (MWNTs) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. The studied REEs ions can be quantitatively retained by MWNTs when the pH exceed 3.0, and then eluted completely with 1.0 mol L−1 HNO3. The detection limits of this method for REEs was between 3 and 57 ng L−1, and the relative standard deviations (RSDs) for the determination of REEs at 10 ng mL−1 level were found to be less than 6% when processing 100 mL sample solution. The method was validated using a certified reference material, and has been successfully applied for the determination of trace rare earth elements in lake water and synthetic seawater with satisfactory results.  相似文献   

2.
The determination of trace elements in edible oils is important because of both the metabolic role of metals and possibilities for adulteration detection and oil characterization.The most commonly used techniques for the determination of metals in oil samples are inductively coupled plasma atomic emission spectrometry (ICP-AES) and atomic absorption spectrometry (AAS). For this study, a microwave assisted decomposition of the olive oil in closed vessels using a mixture of nitric acid and hydrogen peroxide was applied as sample preparation.The low achievable LODs enable the determination by ICP-AES of even very low concentrations of most elements of interest. The proposed ICP-AES method permits the determination of Ca, Fe, Mg, Na, and Zn in olive oils. Elements present in small amounts (Al, Co, Cu, K, Mn, Ni) were measured by ETA-AAS in the same sample digest. The concentrations of Al, Co, Cu, K, Mn, and Ni were in the range from 0.15 to 1.5 μg/g and differ according to the geographical origin of the oils. For the amounts of Fe, Mg, Na, and Zn in the samples, no significant differences according to the geographical origin of the oils could be observed, the mean concentrations being 15.31, 3.26, 33.10, and 3.39 μg/g, respectively. The Ca content varies in the range of 1.3 to 9.0 μg/g.The dependency of the trace elemental content of olive oils on their geographical origin can be used for their local characterization.  相似文献   

3.
The development and use of instrumental methods for the determination of a wide range of trace elements in oil is considered. Special attention is paid to methods of the direct introduction of samples into spectrometers. It is shown that preliminary sample preparation is in certain cases necessary for the determination of trace elements in oil. The main methods of sample preparation of oils, including methods of extraction of a series of trace elements from crude oil (extraction, membrane, sorption, etc.), are described.  相似文献   

4.
For some saline environments (e.g. deeply percolating groundwater, interstitial water in marine sediments, water sample collected after several steps of fractionation) the volume of water sample available is limited. A technique is presented which enables simultaneous determination of major and trace elements after preconcentration of only 60 mL sample on chelating resins. Chelex-100 and Chelamine were used for the preconcentration of trace elements (Cd, Cu, Pb, Zn, Sc) and rare earth elements (La, Ce, Nd, Yb) from saline water before their measurement by inductively coupled plasma mass spectrometry. Retention of the major elements (Na, Ca, Mg) by the Chelamine resin was lower than by Chelex; this enabled their direct measurement in the solution after passage through the resin column. For trace metal recoveries both resins yield the same mass balance. Only Chelex resin enabled the quantitative recovery of rare earth elements. The major elements, trace metals and rare earth elements cannot be measured after passage through one resin only. The protocol proposes the initial use of Chelamine for measurement of trace and major elements and then passage the same sample through the Chelex resin for determination of the rare earth elements. The detection limit ranged from 1 to 12 pg mL–1. At concentrations of 1 ng mL–1 of trace metals and REE spiked in coastal water the precision for 10 replicates was in the range of 0.3–3.4% (RSD). The accuracy of the method was demonstrated by analyzing two standard reference waters, SLRS-3 and CASS-3.  相似文献   

5.
A simple flame atomic absorption spectrometric (FAAS) procedure for the determination of lead, bismuth, gold, palladium and cadmium as impurities in Raney nickel and nickel oxide was developed using a preconcentration step on an Amberlite XAD-16 resin packed column. Lead, bismuth, gold, palladium and cadmium were quantitatively recovered and separated from a solution containing 1 M HCl and 0.3 M NaI by the column system. Effects of the various parameters such as reagent concentrations, sample volume, matrix effects, etc. have been investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (n = 7) is generally lower than 12%. The limit of detection (3s, n = 20) was between 10–270 ng/g. The results were used for separation and preconcentration of five trace elements from nickel matrices.  相似文献   

6.
Comparative elemental analysis of the Tengiz oil and diesel fuel is performed by inductively coupled plasma mass-spectrometry with autoclave digestion, digestion, dilution with organic solvents, and also rotating coiled columns (RCCs). The advantages and drawbacks of each of the listed sample preparation techniques for the separation of microelements are discussed. In contrast to the other versions, the use of RCCs is shown to provide a unique opportunity to preconcentrating microelements from oil and petroleum products into tiny volumes of aqueous solutions (10 mL of 0.5 M HNO3). The eluate prepared can be used in the subsequent analysis by ICP MS with no extra sample preparation steps. The RCC preconcentration of elements from oil and petroleum products makes it possible to determine metals in concentrations from μg/kg to ng/kg.  相似文献   

7.
A method is proposed for the sample preparation of heavy oil residues characterized by viscosity of more than 700 mm2/sec at 100°C to study their elemental composition. It is shown that a wide range of elements can be determined in heavy oil residues by inductively coupled plasma atomic emission spectrometry (IC-AES) when the sample dissolved in an organic solvent is injected into the instrument. The optimal parameters for the determination of metals in heavy oil residues by ICP-AES are selected, including an organic solvent and the method of sample dilution. The results of elemental analysis of heavy residues of oils from Chernigovskoe, Shpakovskoe, and Samarskoe deposits are compared. The developed method for determining metals in heavy oil residues significantly reduces the analysis time and does not require complex sample preparation.  相似文献   

8.
A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0?mol?L?1 HNO3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II) using FAAS technique were 280 (for 560?mL of sample solution), 0.28?ng?mL?1, 1.4?C70?ng?mL?1 and 4.6% (for 10?ng?mL?1, n?=?10), respectively. These analytical parameters using GFAAS technique were 300 (for 600?mL of sample solution), 0.002?ng?mL?1, 0.006?C13.2?ng?mL?1 and 3.1% (for 5?ng?mL?1, n?=?10), respectively. The presented procedure was successfully applied for determination of Pb(II) content in opium, heroin, lipstick, plants and water samples.  相似文献   

9.
Flow injection iminodiacetic acid ethyl cellulose (IDAEC) microcolumn preconcentration and graphite furnace atomic absorption spectrometry determination of trace metals (Cd, Co, Ni, Pb) were carried out without decomposition of the drug matrix. The two forms of chromium Cr(III) and Cr(VI) were separated using IDAEC and anion exchanger diethylaminoethyl (DE)-cellulose, respectively. The detection limits of trace elements in pharmaceutical substances (sugars, sorbitol, mannitol, paracetamol, amidopyrine, chloral hydrate) after a 10-fold preconcentration in 1–5% m/v solution of pharmaceuticals were in the 0.3–29 ng g−1 range. The measured concentration of trace elements in substances investigated was below 100 ng g−1. The spike recovery was close to 100%. The capability of total reflection X-ray fluorescence technique for the determination of trace elements in pharmaceuticals with and without preconcentation was explored.  相似文献   

10.
A simple flame atomic absorption spectrometric (FAAS) procedure for the determination of lead, bismuth, gold, palladium and cadmium as impurities in Raney nickel and nickel oxide was developed using a preconcentration step on an Amberlite XAD-16 resin packed column. Lead, bismuth, gold, palladium and cadmium were quantitatively recovered and separated from a solution containing 1 M HCl and 0.3 M NaI by the column system. Effects of the various parameters such as reagent concentrations, sample volume, matrix effects, etc. have been investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (n = 7) is generally lower than 12%. The limit of detection (3s, n = 20) was between 10–270 ng/g. The results were used for separation and preconcentration of five trace elements from nickel matrices. Received: 8 February 2000 / Revised: 31 March 2000 / Accepted: 7 April 2000  相似文献   

11.
A method has been developed for the separation of the entire group of rare-earth elements from high-purity calcium chloride by countercurrent chromatography, and subsequent determination of the elements by ICP– MS. A solution of diphenyl[dibutylcarbamoylmethyl]phosphine oxide in chloroform (0.5 mol L–1) has been chosen as reagent for the extraction and preconcentration of trace rare-earth elements from aqueous 5% CaCl2 solution, 3 mol L–1 in HNO3 and 0.1 mol L–1 in HClO4. The analytes are back-extracted into a small volume of water and the aqueous eluate is subjected to ICP–MS measurements. The performance characteristics of the procedure developed have been checked by use of the standard addition technique and a real CaCl2 sample (Merck product) has been analyzed. The results obtained demonstrate the applicability of countercurrent chromatography to the determination of ultratrace elements. Received: 6 December 2000 / Revised: 27 February 2001 / Accepted: 6 March 2001  相似文献   

12.
A method for the determination of trace amounts of silver with a chemically modified carbon paste electrode is described. The modified electrode is prepared by simply mixing a chelating resin (a polythioether backbone and dioxymonosulphur polyethylene polyimines in the side-chain polymer) with graphite powder and Nujol oil. By immersing the electrode in a silver sample solution (pH = 6.5–7.5), silver can be adsorbed on the electrode surface and then determined by voltammetry in a separate blank solution. The response depends on the concentration of silver and the preconcentration time. For a preconcentration time of 5 min, the detection limit is about 3 × 10?10 M and the linear range is from 5 × 10?10 to 1 × 10?7 M with a relative standard deviation of 4%. Many common metal ions have no or little effect on the determination of silver. The recommended procedure was applied to the determination of trace amounts of silver in waste water.  相似文献   

13.
A new method is presented for simultaneous preconcentration of trace Fe(III) and Cr(III) by using polyacrylic acid-alumina as a sorbent. The separation/preconcentration conditions of analytes were investigated, including effect of pH, flow rate, elution conditions, sample volume, and interfering ions. At pH 4, the maximum sorption capacities of Fe3+ and Cr3+ were 8.0 and 13.0 mg/g, respectively, by the column method. The linearity was maintained in the concentration range of 0.175-6.0 x 10(3) ng/mL for iron and 0.175-8.0 x 10(3) ng/mL for chromium in the original solution. The RSD values under optimum conditions were +/- 1.73 and +/- 1.28% for 2.0 microg/mL Fe and Cr, respectively. The preconcentration factor was 400 for both of the elements, and detection limits were 0.025 and 0.023 ng/mL for Fe and Cr in the original solutions. The proposed method was successfully applied to the determination of trace amounts of Fe and Cr in plant samples.  相似文献   

14.
Pei Liang  Qian Li  Rui Liu 《Mikrochimica acta》2009,164(1-2):119-124
A new method has been developed for the determination of trace molybdenum based on separation and preconcentration with TiO2 nanoparticles immobilized on silica gel (immobilized TiO2 nanoparticles) prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The optimum experimental parameters for preconcentration of molybdenum, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Molybdenum can be quantitatively retained by immobilized TiO2 nanoparticles at pH 1.0 and separated from the metal cations in the solution, then eluted completely with 0.5 mol L?1 NaOH. The detection limit of this method for Mo was 0.6 ng L?1 with an enrichment factor of 100, and the relative standard deviation (RSD) was 3.4% at the 10 ng mL?1 Mo level. The method has been applied to the determination of trace amounts of Mo in biological and water samples with satisfactory results.  相似文献   

15.
On-line system incorporating a microcolumn of Muromac A-1 resin was used for the developing of method for preconcentration of trace elements followed by inductively coupled plasma (ICP) atomic emission spectrometry determination. A chelating type ion exchange resin has been characterized regarding the sorption and subsequent elution of 24 elements, aiming to their preconcentration from water samples of different origins. The effect of column conditioning, pH and flow rate during the preconcentration step, and the nature of the acid medium employed for desorption of the retained elements were investigated. A sample (pH 5) is pumped through the column at 3 ml min−1 and sequentially eluted directly to the ICP with 3 M HNO3/HCl mixtures. In order to remove residual matrix elements from the column after sample loading a short buffer wash was found to be necessary. The effectiveness of the matrix separation process was illustrated. The procedure was validated by analyzing several simple matrices, Standard River water sample as well as artificial seawater. Proposed method can be applied for simultaneous determination of In, Tl, Ti, Y, Cd, Co, Cu and Ni in seawater and for multielement trace analysis of river water. Recovery at 1 μg l−1 level for the determination of investigated 24 elements in pure water ranged from 93.1 to 96% except for Pd (82.2%) and Pb (88.1%). For the same concentration level for seawater analysis recovery was between 81.9 and 95.6% except for Hg (38.2%).  相似文献   

16.
A new method using a microcolumn packed with nanometer TiO2 as solid-phase extractant has been developed for the simultaneous preconcentration of trace amounts of Cu, Mn, Cr and Ni prior to their measurements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes have been investigated. The adsorption capacity of nanometer TiO2 was found as 0.108, 0.149, 0.039 and 0.034 mmol g−1 for Cu, Cr, Mn and Ni, respectively. The separation of analytes can be achieved from water samples with a concentration factor of 50 times. The method has been applied for the determination of trace elements in biological sample and lake water with satisfactory results.  相似文献   

17.
This paper describes the application of organo nanoclay, an easily prepared and stable solid sorbent, to the preconcentration of trace amounts of palladium ions in aqueous solution. The organo nanoclay was prepared by adding tetradecyldimethylbenzylamonium chloride onto montmorillonite, which was then modified with 1-(2-pyridylazo)-2-naphthol. The modified nanoclay was used as a solid sorbent for separation and preconcentration of trace amounts of Pd(II) ions, and a simple, sensitive, and economical method was developed for determination of trace amounts of palladium by flame atomic absorption spectrometry. The sorption of Pd(II) ions was quantitative in the pH range of 1.5-5.0, whereas quantitative desorption occurred with 5.0 mL of a mixture containing 1.0 M thiourea and 1.0 M HCl. The RSD of the method was +/- 2.1% (n = 10; concn = 0.5 microg/mL), and the LOD (3sigma(bl); sigma = SD and bl = blank) was 0.1 ng/mL. The calibration curve was linear for concentrations of 0.5-8.0 microg/mL in the initial solution, and the preconcentration factor was 140. The maximum capacity of the sorbent was 2.4 mg Pd(II)/g modified organo nanoclay. The influences of the experimental parameters, including sample pH, eluant volume, eluant type, sample volume, and interfering ions, on the recoveries of the palladium ion were investigated. The proposed method was applied to the preconcentration and determination of palladium in different samples.  相似文献   

18.
A separation and preconcentration method based on solid-phase extraction using sulfoxide adsorbent was developed for the determination of Hg(II) in natural water samples by inductively coupled plasma mass spectrometry (ICP-MS). The sulfoxide adsorbent was packed into a commercially available syringe-driven column (with a bed volume of 1.0 mL), which permitted off-line sample loading and on-line elution/measurement. The optimized operating conditions were as follows: sample condition for Hg(II) adsorption, 0.5% HCl; sample-loading flow rate, 10 mL min(-1); eluent for recovering Hg(II), 1% cysteine water solution. A test using multi-element mixed solution showed that most trace elements in natural water, except for Bi, could be completely separated from Hg(II). The recoveries of Hg(II) were 99.0 ± 3.2 and 100.7 ± 4.3%, respectively, when 0.64 and 0.16 ng mL(-1) of Hg(II) were added into the test sample. The detection limit of Hg(II) using a quadrupole ICP-MS after 10-fold preconcentration was 1.5 pg mL(-1). The blank value was 2.8 ± 0.5 pg mL(-1).  相似文献   

19.
A simple and selective method for rapid extraction and determination of trace amounts of iron(III) using octadecyl-bonded silica membrane disks modified with 2-mercaptopyridine-1-oxide and flame atomic absorption spectroscopy is presented. The factors influencing extraction efficiency were evaluated, including the nature of the counter anion, pH of the sample solution, amount of ligand, flow rate of the sample and type of stripping solution. The maximum capacity of the membrane disk, modified by 10 mg of the ligand, was found to be 926 ± 6 μg of iron(III). The breakthrough volume was greater than 2500 ml. Iron(III) was completely recovered (>99%) from water with a preconcentration factor of more than 166. The limit of detection of the proposed method was 0.63 ng ml?1. The various cationic interferences had no effect on the recovery of iron(III) from the binary mixtures. The proposed method was applied to the determination of iron(III) from three different water samples.  相似文献   

20.
For some saline environments (e.g. deeply percolating groundwater, interstitial water in marine sediments, water sample collected after several steps of fractionation) the volume of water sample available is limited. A technique is presented which enables simultaneous determination of major and trace elements after preconcentration of only 60 mL sample on chelating resins. Chelex-100 and Chelamine were used for the preconcentration of trace elements (Cd, Cu, Pb, Zn, Sc) and rare earth elements (La, Ce, Nd, Yb) from saline water before their measurement by inductively coupled plasma mass spectrometry. Retention of the major elements (Na, Ca, Mg) by the Chelamine resin was lower than by Chelex; this enabled their direct measurement in the solution after passage through the resin column. For trace metal recoveries both resins yield the same mass balance. Only Chelex resin enabled the quantitative recovery of rare earth elements. The major elements, trace metals and rare earth elements cannot be measured after passage through one resin only. The protocol proposes the initial use of Chelamine for measurement of trace and major elements and then passage the same sample through the Chelex resin for determination of the rare earth elements. The detection limit ranged from 1 to 12 pg mL(-1). At concentrations of 1 ng mL(-1) of trace metals and REE spiked in coastal water the precision for 10 replicates was in the range of 0.3-3.4% (RSD). The accuracy of the method was demonstrated by analyzing two standard reference waters, SLRS-3 and CASS-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号