首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotubes (CNTs)-based composites have attracted significant research interest in recent years, owing to their important applications in various technological fields. In this investigation, we describe a general approach to make CNTs-based nanocomposites via self-assembly. The method allows one to prepare binary composites as well as complex systems such as ternary or even quaternary composites where nanoparticles of active phases (e.g., metals and metal oxides) are used as primary building blocks. Six different kinds of binary, ternary, and quaternary nanocomposites, TiO2/CNTs, Co3O4/CNTs, Au/CNTs, Au/TiO2/CNTs, TiO2/Co3O4/CNTs, and Co/CoO/Co3O4/CNTs, have been reported herein in order to draw common features for various assembly schemes. To understand the interconnectivity between the active phases and CNTs, we have devised a range of experiments and examined the resultant samples with many instrumental techniques. On the basis of this work, we demonstrate that highly complex inorganic-organic nanohybrids with good controls in particle shape, size, and distribution can be fabricated from presynthesized nanobuilding units. Concerning their workability, we further show that self-assembled TiO2/CNTs are sufficiently robust and the electrochemical performance of TiO2 is significantly enhanced when it is used as a cathode material in Li-battery application.  相似文献   

2.
In drug delivery, carbon nanotubes (CNTs) hold a great potential as carriers because of their ability to easily cross biological barriers and be internalised into cells. Their high aspect ratio allows multi‐functionalisation and their development as a multimodal platform for targeted therapy. In this article, we report the controlled covalent derivatisation of triple‐functionalised CNTs with the anticancer drug gemcitabine, folic acid as a targeting ligand and fluorescein as a probe. The anticancer activity of gemcitabine was maintained after covalent grafting onto the CNTs. The functionalised nanotubes were internalised into both folate‐positive and negative cells, suggesting the passive diffusion of CNTs. Overall, our approach is versatile and offers a precise chemical control of the sidewall functionalisation of CNTs and the possibility to manoeuvre the types of functionalities required on the nanotubes for a multimodal therapeutic strategy.  相似文献   

3.
An understanding of the growth mechanism of carbon nanotubes (CNTs) is very important for the control of their structures, which in turn will be the basis for their further theoretical studies and applications. On the basis of high-resolution transmission electron microscopy observations of the initial nucleation of CNTs, the following deductions are made: (1) the nucleation of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) starts at a low-temperature zone in front of the reaction zone; (2) the addition of sulfur results in localized liquid zones on the surface of big catalyst particles as the initial nucleation sites; (3) a temperature gradient is necessary to realize the role of sulfur in the structure of CNTs; and (4) the shell number of CNTs can be changed at the nucleation and growth stages. On the basis of the above, a growth model for the formation of SWNTs and DWNTs is proposed, which might open up the possibility of controlling the structure of CNTs.  相似文献   

4.
The layer number is of great importance for nanocarbon materials, such as carbon nanotubes (CNTs) and graphene. While simple optical methods exist to evaluate few-layer graphene, equivalent analysis for CNTs is limited to transmission electron microscopy. We present a simple macroscopic method based on the (002) X-ray diffraction peak to evaluate the average wall number of CNTs in the range from single- to few-walled. The key was the finding that the (002) peak could be decomposed into two basic components: the intertube structure (outer-wall contacts) and the intratube structure (concentric shells). Decomposition of the peaks revealed a linear relationship between the average wall number and the ratio of the intertube and intratube contributions to the (002) peak. Good agreement with CNTs having average wall numbers ranging from 1 to ~5 demonstrated this as a macroscopic method for average wall number analysis.  相似文献   

5.
The carbon nanotubes/TiO2 (CNTs/TiO2) composite photocatalysts composed of TiO2 nanoparticles and multiwalled carbon nanotubes (CNTs) were prepared by a facile hydrothermal method. The photocatalysts were characterized by a range of analytical techniques including X-ray powder diffraction, field emission scanning electron microscope, thermal gravimetric analysis and UV–Vis optical absorption spectra, etc. The amount of TiO2 nanoparticles growing on CNTs could be tuned by adjusting the dosage of precursor in the reaction solution. Both the adsorptivity and photocatalytic activities of pure CNTs, pure TiO2, and the CNTs/TiO2 nanocomposites were tested by the removal of methylene blue from water in dark and under a simulated sunlight, respectively. By comparison, the improved photocatalytic activity of the CNTs/TiO2 nanocomposite is mainly due to that the CNTs can disperse the active component of TiO2 nanoparticles, provide a larger the specific surface area, as well as act as an electron sink to accelerate the separation of the photogenerated charges.  相似文献   

6.
曹永  赵芸  矫庆泽 《应用化学》2010,27(4):445-448
分别以具有相似Fe、Co、Ni含量的层状双金属氢氧化物(LDHs)为催化剂前体,用化学气相沉积的方法生长碳纳米管(CNTs)。 催化剂由LDHs焙烧还原得到。 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及拉曼光谱(Raman)测试技术对LDHs及其焙烧产物的结构、CNTs的形貌和结构进行了研究。 结果表明,3种催化剂生长的CNTs均为多壁结构;其中Co催化剂活性较低,生长CNTs的管径较细、石墨化程度较高;Ni催化剂的活性较高,生长CNTs的密度较大、管壁较厚、石墨化程度较差;Fe催化剂的活性介于Co和Ni之间。 催化剂活性及CNTs的密度可以由生长CNTs的结构来解释。  相似文献   

7.
分别以具有相似Fe、Co、Ni含量的层状双金属氢氧化物(LDHs)为催化剂前体,用化学气相沉积的方法生长碳纳米管(CNTs).催化剂由LDHs焙烧还原得到.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及拉曼光谱(Raman)测试技术对LDHs及其焙烧产物的结构、CNTs的形貌和结构进行了研究.结果表明,3种催化剂生长的CNTs均为多壁结构;其中Co催化剂活性较低,生长CNTs的管径较细、石墨化程度较高;Ni催化剂的活性较高,生长CNTs的密度较大、管壁较厚、石墨化程度较差;Fe催化剂的活性介于Co和Ni之间.催化剂活性及CNTs的密度可以由生长CNTs的结构来解释.  相似文献   

8.
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。  相似文献   

9.
《Electroanalysis》2005,17(1):79-84
Fabrication, electrochemical characterization, and applications of low‐site density carbon nanotubes based nanoelectrode arrays (CNTs‐NEAs) are reported in this work. Spin‐coating of an epoxy resin provides a new way to create the electrode passivation layer effectively reducing electrode capacitance and current leakage. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan‐rate‐independent limiting current. Square‐wave voltammetry showed well‐defined peak shapes in voltammograms of K3Fe(CN)6 and 4‐acetamidophenol (acetaminophen) and the peak currents to be proportioned to their concentrations, demonstrating the feasibility for voltammetric analysis of the CNTs‐NEAs. The CNTs‐NEAs were also used successfully for voltammetric detection of trace concentrations of lead(II) at ppb level at first‐time. The CNTs‐NEAs provide an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.  相似文献   

10.
The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The carbon material is graphitic as deduced from spectroscopic studies (X-ray diffraction, Raman and electron energy-loss spectroscopy (EELS)). From M?ssbauer studies, the presence of two different oxidation states (Fe0 and FeIII) of the catalyst is proven. Geometric structuring of the template by two different methods has been studied. Inkjet catalyst printing shows that the tubes can be arranged in defined areas by a simple and easily applied technique. Laser-structuring creates grooves of nanotube fibers embedded in the alumina host. This allows the formation of defined architectures in the microm range. Results on hydrogen absorption and field emission properties of the CNT fibers are reported.  相似文献   

11.
There has been growing interest in the use of modified-carbon-nanotube electrodes in applications such as the electrochemical detection of biologically significant compounds, owing to their apparent "electrocatalytic" properties and ability to enhance oxidative signals. In spite of their salient properties, little work has been done to further examine the reasons for these reported characteristics. In this report, we present clear evidence that the presence of nanographite impurities within carbon nanotubes (CNTs) is responsible for providing the previously reported enhanced electrochemical response. We have demonstrated this effect on homocysteine, N-acetyl-L-cysteine, nitric oxide, and insulin, which are important biological agents in the body. Moreover, we also showed that the influence of nanographite impurities on the electrochemistry of carbon nanotubes is prevalent among a variety of CNTs, such as single-walled CNTs, double-walled CNTs, and few-walled CNTs. Our findings will have a profound influence upon the biomedical applications of CNTs.  相似文献   

12.
碳纳米管表面修饰程度对碳纳米管载Pt电催化性能的影响   总被引:5,自引:0,他引:5  
比较了用不同温度的浓HNO3处理的碳纳米管(CNTs)作载体的Pt(Pt/CNTs)对甲醇氧化的电催化活性. 结果表明浓HNO3处理使CNTs表面修饰上的含氧基团对CNTs上沉积Pt粒子的平均粒径有较大影响. 表面修饰程度适当时, 制得的Pt/CNTs中Pt粒子较小, 因此, 对甲醇氧化的电催化活性较高. 而表面修饰程度过大, 易使Pt粒子团聚, 从而降低Pt/CNTs催化剂对甲醇氧化的电化学活性.  相似文献   

13.
Environmental pollution caused by toxic metals (heavy metals, radioactive metals, etc.) is one of the major global issues, thus removal of toxic metals from contaminated water seems to be particularly important. On the other hand, the recovery and enrichment of metals, especially noble metals, from waste water is also crucial. To address these issues, nanotechnology plays an essential role in environmental monitoring and pollution control. To remove metals from contaminated water, or enrich metals from waste water, carbon nanotubes (CNTs) and their composites have attracted great attention due to their excellent adsorption performance. The removal efficiency for metal ions by CNTs was observed aroud 10–80 %, which could be improved to approach 100 % by selectively functionalizing CNTs with organic ligands. Herein, we review the applications of CNTs in treatment of toxic metal-containing wastewater for environmental monitoring and metals recovery. Due to their higher sensitivity and selectivity towards the enrichment of metals or detection of toxic metal pollution of the environment, and the latest research progress of using CNT composites for metal treatment is also discussed.  相似文献   

14.
Previous investigations have revealed that even long carbon nanotubes (CNTs) retain bond patterns that are characterized by the localization of Clar rings. Even for CNTs with 10 nm length, an alternated, oscillating structure of Clar and Kekulé patterning was also found, indicating that these arrangements may possibly persist for even longer nanotubes, given that they are finite. In the present work, we perform a detailed and comprehensive theoretical study of this phenomenon, in order to find the causes that give rise to these patterns. A complete set of CNTs with different chiralities, diameters (up to 2 nm), lengths (up to 10 nm) and endings (capped, uncapped, and tailored endings) was considered for such purposes. The results indicate that the Clar patterning appears not only on armchair CNTs, but also on those with chiral angle values close to 30°, and this results in a stabilization of the structure, when compared with the uniform, zigzag CNTs. This stabilizing effect points to the causes that underlie the three Nakamura CNT types, resulting as the superposition of structures with a maximal number of Clar rings. Although there is a strict dependence on the border shape, the main cause of the bond patterning in long tubes is to be found in the intrinsic wrapping of each CNT, because the type and number of oscillations present in the longest structures do not depend on the particular length. Nevertheless, the three Nakamura types of armchair tubes appear to subsist beyond the appearance of oscillations, because each of these sets evolves in a different manner, and energy properties that link them together. Apart from the geometry, Clar patterning was investigated through NICS (Nucleus Independent Chemical Shifts) measures, which reveal a connection between the Clar rings and a local concentration of aromaticity.  相似文献   

15.
Potential applicability of undoped, B‐, and N‐doped carbon nanotubes (CNTs) for elaboration of the working materials of gas sensors of hydrogen halide molecules HX (X = F, Cl, Br) is analyzed in computational studies of molecular adsorption on the CNTs surfaces. Density Functional Theory (DFT)‐based geometry‐optimized calculations of the electronic structure of undoped, B‐, and N‐doped CNTs of (3,3) and (5,5) chiralities with adsorbed HX (X = F, Cl, Br) molecules are performed within molecular cluster approach. Relaxed geometries, binding energies between the adsorbates and the nanotubes, charge states of the adsorbates and the electronic wave function contours are calculated and analyzed in the context of gas sensing applications. Obtained results are supplemented by calculations of adsorption of hydrogen halides on B(N)‐doped graphene sheets which are considered as model approximation for large‐diameter CNTs. It is found that the B‐doped CNTs are perspective for elaboration of sensing materials for detection of HCl and HBr molecules. The undoped and the N‐doped CNTs are predicted to be less suitable materials for detection of hydrogen halide gases HX (X = F, Cl, Br). © 2015 Wiley Periodicals, Inc.  相似文献   

16.
《先进技术聚合物》2018,29(6):1547-1567
Recently, it has been found that carbon nanotubes (CNTs) and graphene could prove to be the most promising carbonaceous fillers in polymers nanocomposites field because of their better structural and functional properties. Their uniform dispersion in polymer matrix leads to significant improvements in their several properties. This paper reviews the effect of nanofillers, ie, CNTs, derivatized CNTs, and graphene on the polycarbonate nanocomposite and its application in aerospace, automobile, sports, electronic sectors, and various industries. The comparative analysis of carbon‐based fillers on the different properties of polycarbonate nanocomposites is also included.  相似文献   

17.
将力学性能优良的碳纳米管(CNTs)与羟基磷灰石(HA)生物陶瓷相复合,发展CNTs/HA复合材料来应用于骨组织修复领域,有望解决HA生物陶瓷力学性能的不足.通过3种不同的制备方法,即通过表面活性剂将CNTs分散在HA基体中、通过酸碱中和反应将CNTs与HA共沉淀以及通过体外浸泡在CNTs上矿化生长HA等方法来获得CNTs/HA复合材料.深入研究CNTs的表面结构和分散状态对CNTs/HA复合材料力学性能的影响.结果表明,CNTs的添加改变了HA的脆性,导致复合材料抗压力学性能得到提高.但是,由于复合材料制备方法的不同,导致CNTs在HA基体中的分散状态、表面结构的完整性以及与HA的界面结合情况不同,导致其抗压力学性能不同.其中,通过表面活性剂将CNTs分散在HA基体中而获得复合材料的抗压力学性能表现最好,而CNTs与HA通过共沉淀法所获得复合材料的抗压力学性能表现最差.  相似文献   

18.
将力学性能优良的碳纳米管(CNTs)与羟基磷灰石(HA)生物陶瓷相复合,发展CNTs/HA复合材料来应用于骨组织修复领域,有望解决HA生物陶瓷力学性能的不足。通过3种不同的制备方法,即通过表面活性剂将CNTs分散在HA基体中、通过酸碱中和反应将CNTs与HA共沉淀以及通过体外浸泡在CNTs上矿化生长HA等方法来获得CNTs/HA复合材料。深入研究CNTs的表面结构和分散状态对CNTs/HA复合材料力学性能的影响。结果表明,CNTs的添加改变了HA的脆性,导致复合材料抗压力学性能得到提高。但是,由于复合材料制备方法的不同,导致CNTs在HA基体中的分散状态、表面结构的完整性以及与HA的界面结合情况不同,导致其抗压力学性能不同。其中,通过表面活性剂将CNTs分散在HA基体中而获得复合材料的抗压力学性能表现最好,而CNTs与HA通过共沉淀法所获得复合材料的抗压力学性能表现最差。  相似文献   

19.
Carbon nanotubes (CNTs) with different diameters were treated by plasma and acid. The CNTs were dispersed in water and the light transmittance of the CNTs dispersoid (the mixture of CNTs and water) was measured to characterize the dispersibility of CNTs. With the light transmittance of water as the baseline, relative transmittance (RT) of CNTs dispersoid was calculated and the curves of RT varying with time were fitted with a function. The effects of CNTs diameter, acid treatment and plasma treatment on the dispersion of CNTs in water were studied according to the fitting results. It could be concluded that the dispersibility of the CNTs with bigger diameters was better. Plasma treatment could improve the dispersibility of CNTs and if the CNTs were acid-treated, plasma treatment could improve their dispersibility further.  相似文献   

20.
Polymer crystallization-driven, periodic patterning on carbon nanotubes   总被引:4,自引:0,他引:4  
We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号