首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
A novel and general biomimetic non-heme Fe-catalyzed asymmetric epoxidation of aromatic alkenes by using hydrogen peroxide is reported herein. The catalyst consists of ferric chloride hexahydrate (FeCl(3)6 H(2)O), pyridine-2,6-dicarboxylic acid (H(2)(pydic)), and readily accessible chiral N-arenesulfonyl-N'-benzyl-substituted ethylenediamine ligands. The asymmetric epoxidation of styrenes with this system gave high conversions but poor enantiomeric excesses (ee), whereas larger alkenes gave high conversions and ee values. For the epoxidation of trans-stilbene (1 a), the ligands (S,S)-N-(4-toluenesulfonyl)-1,2-diphenylethylenediamine ((S,S)-4 a) and its N'-benzylated derivative ((S,S)-5 a) gave opposite enantiomers of trans-stilbene oxide, that is, (S,S)-2 a and (R,R)-2 a, respectively. The enantioselectivity of alkene epoxidation is controlled by steric and electronic factors, although steric effects are more dominant. Preliminary mechanistic studies suggest the in situ formation of several chiral Fe-complexes, such as [FeCl(L*)(2)(pydic)]HCl (L*=(S,S)-4 a or (S,S)-5 a in the catalyst mixture), which were identified by ESIMS. A UV/Vis study of the catalyst mixture, which consisted of FeCl(3)6 H(2)O, H(2)(pydic), and (S,S)-4 a, suggested the formation of a new species with an absorbance peak at lambda=465 nm upon treatment with hydrogen peroxide. With the aid of two independent spin traps, we could confirm by EPR spectroscopy that the reaction proceeds via radical intermediates. Kinetic studies with deuterated styrenes showed inverse secondary kinetic isotope effects, with values of k(H)/k(D)=0.93 for the beta carbon and k(H)/k(D)=0.97 for the alpha carbon, which suggested an unsymmetrical transition state with stepwise O transfer. Competitive epoxidation of para-substituted styrenes revealed a linear dual-parameter Hammett plot with a slope of 1.00. Under standard conditions, epoxidation of 1 a in the presence of ten equivalents of H(2) (18)O resulted in an absence of the isotopic label in (S,S)-2 a. A positive nonlinear effect was observed during the epoxidation of 1 a in the presence of (S,S)-5 a and (R,R)-5 a.  相似文献   

6.
The epoxidation of propylene with hydrogen peroxide catalyzed by a reaction-controlled phase transfer catalyst (RCPT) composed of quaternary ammonium heteropolyoxotungstates in acetonitrile medium is studied. The influence of several factors on the reaction is studied, such as the reaction temperature, the effect of H2O amount, the reaction time, the effect of the catalyst amount, solvent effect and the recycle of the catalyst. Under mild conditions, H2O2 conversion is 98.6%, and propylene oxide (PO) selectivity based on H2O2 is 97.2%. During the epoxidation, the catalyst is dissolved in the solution. However, after H2O2 is used up, the catalyst can be recovered as a precipitate and can be recycled. We find that the recycled catalyst has similar catalytic activity as the fresh one.  相似文献   

7.
8.
9.
10.
Asymmetric epoxidation of olefins with 30 % H2O2 in the presence of [Ru(pybox)(pydic)] 1 and [Ru(pyboxazine)(pydic)] 2 has been studied in detail (pybox = pyridine-2,6-bisoxazoline, pyboxazine = pyridine-2,6-bisoxazine, pydic = 2,6-pyridinedicarboxylate). 35 Ruthenium complexes with sterically and electronically different substituents have been tested in environmentally benign epoxidation reactions. Mono-, 1,1-di-, cis- and trans-1,2-di-, tri-, and tetra-substituted aromatic olefins with versatile functional groups can be epoxidized with this type of catalyst in good to excellent yields (up to 100 %) with moderate to good enantioselectivies (up to 84 % ee). Additive and solvent effects as well as the relative rate of reaction with different catalysts have been established. It is shown that the presence of weak organic acids or an electron-withdrawing group on the catalyst increases the reactivity. New insights on the reaction intermediates and reaction pathway of the ruthenium-catalyzed epoxidation are proposed on the basis of density functional theory calculation and experiments.  相似文献   

11.
Hexanuclear rhodium carbonyl cluster, Rh6(CO)16, catalyzes benzene hydroxylation with hydrogen peroxide in acetonitrile solution. Phenol and (at lower concentration) quinone are formed with the maximum attained total yield and turnover number 17% and 683, respectively. Certain other rhodium carbonyl complexes, containing cyclopentadienyl ligands, Rh2Cp2(CO)3 and Rh3(CpMe)3(CO)3, are less efficient catalysts. Cyclopentadienyl derivatives of rhodium which do not contain the carbonyl ligands, Rh(CpMe5)(CH2?CH2)2, RhCp(cyclooctatetraene) and Rh2Cp2(cyclooctatetraene) turned out to be absolutely inactive in the benzene hydroxylation. Styrene is transformed into benzaldehyde and (at lower concentration) acetophenone and 1‐phenylethanol. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This paper describes the development of green, efficient H(2)O(2)-based epoxidation systems with three kinds of polyoxometalates: (i) a dinuclear peroxotungstate [W(2)O(3)(O(2))(4)(H(2)O)(2)](2-) (I), (ii) a divacant lacunary polyoxotungstate [gamma-SiW(10)O(34)(H(2)O)(2)]4 (II), (iii) and a divanadium-substituted polyoxotungstate [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III). The highly chemo-, regio-, and diastereoselective epoxidation of various allylic alcohols with only 1 equiv H(2)O(2) in water can be efficiently catalyzed by potassium salt of I (K-I). The catalyst K-I can be recycled with the retention of the catalytic performance. Protonation of a divacant lacunary polyoxotungstate [gamma-SiW(10)O(36)](8-) gives [gamma-SiW(10)O(34)(H(2)O)(2)](4-) (II) with two aquo ligands. The tetra-n-butylammonium salt of II (TBA-II) catalyzes epoxidation of common olefins including propylene with >or=99% selectivity to epoxide and >or=99% efficiency of H(2)O(2) utilization. The bis(mu-hydroxo)bridged dioxovanadium site in [gamma-1,2-H(2)SiV(2)W(10)O(40)](4-) (III) can also efficiently catalyze epoxidation of a variety of olefins with 1 equiv H(2)O(2). Notably, the system with III shows unique stereospecificity, diastereoselectivity, and regioselectivity for the epoxidation of cis/trans olefins, 3-substituted cyclohexenes, and nonconjugated dienes, respectively, which are quite different from those reported for epoxidation systems up to now. Furthermore, the heterogenization of the mentioned polyoxometalates can be achieved by using ionic liquid-modified SiO(2) as a support without loss of catalytic performance.  相似文献   

14.
15.
The synthesis of chiral tridentate N,N,N-pyridine-2,6-bisoxazolines 3 (pybox ligands) and N,N,N-pyridine-2,6-bisoxazines 4 (pyboxazine ligands) is described in detail. These novel ligands constitute a useful toolbox for the application in asymmetric catalysis. Compounds 3 and 4 are conveniently prepared by cyclization of enantiomerically pure alpha- or beta-amino alcohols with dimethyl pyridine-2,6-dicarboximidate. The corresponding ruthenium complexes are efficient asymmetric epoxidation catalysts and have been prepared in good yield and fully characterized by spectroscopic means. Four of these ruthenium complexes have been characterized by X-ray crystallography. For the first time the molecular structure of a pyboxazine complex [2,6-bis-[(4S)-4-phenyl-5,6-dihydro-4H-[1,3]oxazinyl]pyridine](pyridine-2,6-dicarboxylate)ruthenium (S)-2 aa, is presented.  相似文献   

16.
Trinuclear carbonyl hydride cluster, Os3(CO)10(µ‐H)2, catalyzes oxidation of cyclooctane to cyclooctyl hydroperoxide by hydrogen peroxide in acetonitrile solution. The hydroperoxide partly decomposes in the course of the reaction to afford cyclooctanone and cyclooctanol. Selectivity parameters obtained in oxidations of various linear and branched alkanes as well as kinetic features of the reaction indicated that the alkane oxidation occurs with the participation of hydroxyl radicals. A similar mechanism operates in transformation of benzene into phenol and styrene into benzaldehyde. The system also oxidizes 1‐phenylethanol to acetophenone. The kinetic study led to a conclusion that oxidation of alcohols does not involve hydroxyl radicals as main oxidizing species and apparently proceeds with the participation of osmyl species, ‘Os?O’. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The highly chemo-, regio-, and diastereoselective and stereospecific epoxidation of various allylic alcohols with only one equivalent of hydrogen peroxide in water can be efficiently catalyzed by the dinuclear peroxotungstate, K2[[W(=O)(O2)2(H2O)]2(mu-O)].2H2O (I). The catalyst is easily recycled while maintaining its catalytic performance. The catalytic reaction mechanism including the exchange of the water ligand to form the tungsten-alcoholate species followed by the insertion of oxygen to the carbon-carbon double bond, and the regeneration of the dinuclear peroxotungstate with hydrogen peroxide is proposed. The reaction rate shows first-order dependence on the concentrations of allylic alcohol and dinuclear peroxotungstate and zero-order dependence on the concentration of hydrogen peroxide. These results, the kinetic data, the comparison of the catalytic rates with those for the stoichiometric reactions, and kinetic isotope effects indicate that the oxygen transfer from a dinuclear peroxotungstate to the double bond is the rate-limiting step for terminal allylic alcohols such as 2-propen-1-ol (1a).  相似文献   

18.
王文芳  孙强盛  夏春谷  孙伟 《催化学报》2018,39(9):1463-1469
自然界中存在许多的金属酶,它们参与促进各种各样的氧化反应,例如羟化反应,环氧化反应等.金属酶催化的反应具有催化效率高、反应条件温和、选择性高等优点.受大自然中的金属酶结构及其性质的启发,人们提出了仿生催化氧化的理念,并开始对金属酶进行模拟,致力于发展清洁氧化的反应方式.在过去的几十年中,科学家们设计合成了一系列仿生金属配合物催化剂.例如,利用非手性的乙二胺骨架设计合成出四齿氮配体MEP(N,N'-dimethylN,N'-bis(2-pyridinylmethyl)ethane-1,2-diamine),将其制备成相应的铁配合物催化剂,该铁催化剂可以很好的实现脂肪族烯烃的环氧化,产率高达90%.2003年,Stack小组首次报道了利用手性N,N-二甲基环己二胺骨架衍生的四齿氮配体金属配合物Mn-MCP-(OTf)2(MCP=N,N-dimethyl-N,N-bis(2-pyridylmethyl)cyclohexane-trans-1,2-diamine)催化的不对称环氧化反应.该反应的对映选择性仅仅为10%.因此,发展新型手性四氮配体金属配合物,用于高产率、高对映选择性的不对称环氧化反应,值得进行深入研究.近年来发展的一些含手性二胺骨架的四齿氮配体,例如PDP(2-[[2-(1-(pyridin-2-ylmethyl)-pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine),被应用到不对称环氧化反应中,但是其手性二胺骨架为联吡咯,价格昂贵,难以制备.这在很大程度上限制了其在不对称合成中的实际应用.因此,利用一些易于合成的手性二胺骨架,发展结构新颖、催化性能优良的四氮金属配合物,成为实现高效、高选择性不对称环氧化反应的关键.在之前的工作基础上,本文以简单易得、价格低廉的天然氨基酸——L-脯氨酸为起始原料,选取吡啶环和含取代基的吡啶环作为侧基氮供体,制备了三种手性四齿氮配体.随后,我们利用新发展的手性四齿氮配体,合成了相应的锰配合物,并且分别将其运用于烯烃不对称环氧化反应中,仔细评估了这些锰金属配合物的催化性能.建立了以0.2 mol%的锰配合物为催化剂,0.5当量的2,2-二甲基丁酸为添加剂,30%双氧水为氧化剂,反应温度为–30 oC,乙腈为溶剂的催化不对称环氧化反应体系.反应结果显示:该催化剂催化的不对称环氧化反应底物适用性广泛,其中苯乙烯、苯并吡喃、烯酰胺等化合物均可以被成功地转化为相应的环氧化物,得到中等至优异的对映选择性(产率最高可达95%,对映选择性最高可达99%).  相似文献   

19.
《天然气化学杂志》2012,(4):452-458
A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate,carbonate,hydroxide and oxalate etc.CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile.To determine the influence of the physicochemical properties and surface basicity on the catalytic activity,the prepared CaO samples were characterized using thermogravimetry(TG),X-ray diffraction(XRD),scanning electron microscopy(SEM),N2-adsorption and temperature-programmed desorption of CO2(CO2-TPD).The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance.In contrast,the surface area,porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity.CaO sample,obtained by the decomposition of Ca(OH)2,prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution,exhibits the highest amount of very strong basic sites and stronger strength of basic sites,and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples.Under the selected reaction conditions,the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号