首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Let sC3 denote the disjoint union of s copies of C3. For each integer t≥2 it is shown that the disjoint union C5∪(2t)C3 has a strong vertex-magic total labeling (and therefore it must also have a strong edge-magic total labeling). For each integer t≥3 it is shown that the disjoint union C4∪(2t−1)C3 has a strong vertex-magic total labeling. These results clarify a conjecture on the magic labeling of 2-regular graphs, which posited that no such labelings existed. It is also shown that for each integer t≥1 the disjoint union C7∪(2t)C3 has a strong vertex-magic total labeling. The construction employs a technique of shifting rows of (newly constructed) Kotzig arrays to label copies of C3. The results add further weight to a conjecture of MacDougall regarding the existence of vertex-magic total labeling for regular graphs.  相似文献   

2.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

3.
I.D. Gray 《Discrete Mathematics》2009,309(20):5986-228
Previously the first author has shown how to construct vertex-magic total labelings (VMTLs) for large families of regular graphs. The construction proceeds by successively adding arbitrary 2-factors to a regular graph of order n which possesses a strong VMTL, to produce a regular graph of the same order but larger size. In this paper, we exploit this construction method. We are able to show that for any r≥4, every r-regular graph of odd order n≤17 has a strong VMTL. We show how to produce strong labelings for some families of 2-regular graphs since these are used as the starting points of our construction. While even-order regular graphs are much harder to deal with, we introduce ‘mirror’ labelings which provide a suitable starting point from which the construction can proceed. We are able to show that several large classes of r-regular graphs of even order (including some Hamiltonian graphs) have VMTLs.  相似文献   

4.
Let r,s be positive integers with r>s, k a nonnegative integer, and n=2rs+k. A uniform subset graph G(n,r,s) is a graph with vertex set [n]r and where two r-subsets A,B∈[n]r are adjacent if and only if |AB|=s. Let denote the diameter of a graph G.In this paper, we prove the following results: (1) If k>0, then if r≥2s+k+2, 2 if ks and 2srs+k, or k<s and s+kr≤2s, and 3 otherwise; (2) If k=0, then . This generalizes a result in [M. Valencia-Pabon, J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383-385].  相似文献   

5.
For given graphs G1,G2,…,Gk, k≥2, the multicolor Ramsey number, denoted by R(G1,G2,…,Gk), is the smallest integer n such that if we arbitrarily color the edges of a complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with i, for some 1≤ik. Let Pk (resp. Ck) be the path (resp. cycle) on k vertices. In the paper we consider the value for numbers of type R(Pi,Pk,Cm) for odd m, km≥3 and when i is odd, and when i is even. In addition, we provide the exact values for Ramsey numbers R(P3,Pk,C4) for all integers k≥3.  相似文献   

6.
Disjoint triangles and quadrilaterals in a graph   总被引:1,自引:0,他引:1  
Jin Yan 《Discrete Mathematics》2008,308(17):3930-3937
Let G be a simple graph of order n and s and k be two positive integers. Brandt et al. obtained the following result: If s?k, n?3s+4(k-s) and σ2(G)?n+s, then G contains k disjoint cycles C1,…,Ck satisfying |Ci|=3 for 1?i?s and |Ci|?4 for s<i?k. In the above result, the length of Ci is not specified for s<i?k. We get a result specifying the length of Ci for each s<i?k if n?3s+4(k-s)+3.  相似文献   

7.
Given integers k,s,t with 0≤st and k≥0, a (k,t,s)-linear forest F is a graph that is the vertex disjoint union of t paths with a total of k edges and with s of the paths being single vertices. If the number of single vertex paths is not critical, the forest F will simply be called a (k,t)-linear forest. A graph G of order nk+t is (k,t)-hamiltonian if for any (k,t)-linear forest F there is a hamiltonian cycle containing F. More generally, given integers m and n with k+tmn, a graph G of order n is (k,t,s,m)-pancyclic if for any (k,t,s)-linear forest F and for each integer r with mrn, there is a cycle of length r containing the linear forest F. Minimum degree conditions and minimum sum of degree conditions of nonadjacent vertices that imply that a graph is (k,t,s,m)-pancyclic (or just (k,t,m)-pancyclic) are proved.  相似文献   

8.
Let k≥2 be an integer. An abeliankth power is a word of the form X1X2?Xk where Xi is a permutation of X1 for 2≤ik. A word W is said to be crucial with respect to abelian kth powers if W avoids abelian kth powers, but Wx ends with an abelian kth power for any letter x occurring in W.Evdokimov and Kitaev (2004) [2] have shown that the shortest length of a crucial word on n letters avoiding abelian squares is 4n−7 for n≥3. Furthermore, Glen et al. (2009) [3] proved that this length for abelian cubes is 9n−13 for n≥5. They have also conjectured that for any k≥4 and sufficiently large n, the shortest length of a crucial word on n letters avoiding abelian kth powers, denoted by ?k(n), is k2n−(k2+k+1). This is currently the best known upper bound for ?k(n), and the best known lower bound, provided in Glen et al., is 3kn−(4k+1) for n≥5 and k≥4. In this note, we improve this lower bound by proving that for n≥2k−1, ?k(n)≥k2n−(2k3−3k2+k+1); thus showing that the aforementioned conjecture is true asymptotically (up to a constant term) for growing n.  相似文献   

9.
The degree distance of a connected graph, introduced by Dobrynin, Kochetova and Gutman, has been studied in mathematical chemistry. In this paper some properties of graphs having minimum degree distance in the class of connected graphs of order n and size mn−1 are deduced. It is shown that any such graph G has no induced subgraph isomorphic to P4, contains a vertex z of degree n−1 such that Gz has at most one connected component C such that |C|≥2 and C has properties similar to those of G.For any fixed k such that k=0,1 or k≥3, if m=n+k and nk+3 then the extremal graph is unique and it is isomorphic to K1+(K1,k+1∪(nk−3)K1).  相似文献   

10.
For integers n≥4 and νn+1, let ex(ν;{C3,…,Cn}) denote the maximum number of edges in a graph of order ν and girth at least n+1. The {C3,…,Cn}-free graphs with order ν and size ex(ν;{C3,…,Cn}) are called extremal graphs and denoted by EX(ν;{C3,…,Cn}). We prove that given an integer k≥0, for each n≥2log2(k+2) there exist extremal graphs with ν vertices, ν+k edges and minimum degree 1 or 2. Considering this idea we construct four infinite families of extremal graphs. We also see that minimal (r;g)-cages are the exclusive elements in EX(ν0(r,g);{C3,…,Cg−1}).  相似文献   

11.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

12.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

13.
Let G be a graph of order n and k a positive integer. A set of subgraphs H={H1,H2,…,Hk} is called a k-degenerated cycle partition (abbreviated to k-DCP) of G if H1,…,Hk are vertex disjoint subgraphs of G such that and for all i, 1≤ik, Hi is a cycle or K1 or K2. If, in addition, for all i, 1≤ik, Hi is a cycle or K1, then H is called a k-weak cycle partition (abbreviated to k-WCP) of G. It has been shown by Enomoto and Li that if |G|=nk and if the degree sum of any pair of nonadjacent vertices is at least nk+1, then G has a k-DCP, except GC5 and k=2. We prove that if G is a graph of order nk+12 that has a k-DCP and if the degree sum of any pair of nonadjacent vertices is at least , then either G has a k-WCP or k=2 and G is a subgraph of K2Kn−2∪{e}, where e is an edge connecting V(K2) and V(Kn−2). By using this, we improve Enomoto and Li’s result for n≥max{k+12,10k−9}.  相似文献   

14.
We consider vertex colorings of hypergraphs in which lower and upper bounds are prescribed for the largest cardinality of a monochromatic subset and/or of a polychromatic subset in each edge. One of the results states that for any integers s≥2 and a≥2 there exists an integer f(s,a) with the following property. If an interval hypergraph admits some coloring such that in each edge Ei at least a prescribed number sis of colors occur and also each Ei contains a monochromatic subset with a prescribed number aia of vertices, then a coloring with these properties exists with at most f(s,a) colors. Further results deal with estimates on the minimum and maximum possible numbers of colors and the time complexity of determining those numbers or testing colorability, for various combinations of the four color bounds prescribed. Many interesting problems remain open.  相似文献   

15.
In this paper two-terminal series-parallel chromatic hypergraphs are introduced and for this class of hypergraphs it is shown that the chromatic polynomial can be computed with polynomial complexity. It is also proved that h-uniform multibridge hypergraphs θ(h;a1,a2,…,ak) are chromatically unique for h≥3 if and only if h=3 and a1=a2=?=ak=1, i.e., when they are sunflower hypergraphs having a core of cardinality 2 and all petals being singletons.  相似文献   

16.
A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which every vertex receives a color from its own list, is called the choice number of G, denoted by ch(G) (resp. the dynamic choice number, denoted by ch2(G)). It was recently conjectured (Akbari et al. (2009) [1]) that for any graph G, ch2(G)=max(ch(G),χ2(G)). In this short note we disprove this conjecture. We first give an example of a small planar bipartite graph G with ch(G)=χ2(G)=3 and ch2(G)=4. Then, for any integer k≥5, we construct a bipartite graph Gk such that ch(Gk)=χ2(Gk)=3 and ch2(G)≥k.  相似文献   

17.
Let A be a set of nonnegative integers. For h≥2, denote by hA the set of all the integers representable by a sum of h elements from A. In this paper, we prove that, if k≥3, and A={a0,a1,…,ak−1} is a finite set of integers such that 0=a0<a1<?<ak−1 and (a1,…,ak−1)=1, then there exist integers c and d and sets C⊆[0,c−2] and D⊆[0,d−2] such that hA=C∪[c,hak−1d]∪(hak−1D) for all . The result is optimal. This improves Nathanson’s result: h≥max{1,(k−2)(ak−1−1)ak−1}.  相似文献   

18.
A sequence m1m2≥?≥mk of k positive integers isn-realizable if there is a partition X1,X2,…,Xk of the integer interval [1,n] such that the sum of the elements in Xi is mi for each i=1,2,…,k. We consider the modular version of the problem and, by using the polynomial method by Alon (1999) [2], we prove that all sequences in Z/pZ of length k≤(p−1)/2 are realizable for any prime p≥3. The bound on k is best possible. An extension of this result is applied to give two results of p-realizable sequences in the integers. The first one is an extension, for n a prime, of the best known sufficient condition for n-realizability. The second one shows that, for n≥(4k)3, an n-feasible sequence of length k isn-realizable if and only if it does not contain forbidden subsequences of elements smaller than n, a natural obstruction forn-realizability.  相似文献   

19.
It is shown that r(F2,Fn)=4n+1 for n≥2, and r(Fs,Fn)≤4n+2s for ns≥2.  相似文献   

20.
Let c be a proper k-coloring of a connected graph G and Π=(C1,C2,…,Ck) be an ordered partition of V(G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v):=(d(v,C1),d(v,C2),…,d(v,Ck)), where d(v,Ci)=min{d(v,x)|xCi},1≤ik. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by χL(G). In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that χL(KG(n,2))=n−1 for all n≥5. Then, we prove that χL(KG(n,k))≤n−1, when nk2. Moreover, we present some bounds for the locating chromatic number of odd graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号