首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Randi? indexR(G) of a graph G is defined as the sum of over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of G when G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G)−D(G). We prove this conjecture completely. In fact, we prove a stronger theorem: If G is a connected graph, then , with equality if and only if G is a path with at least three vertices.  相似文献   

5.
The Randi? index R(G) of a graph G is defined by R(G)=uv1d(u)d(v), where d(u) is the degree of a vertex u and the summation extends over all edges uv of G. Delorme et al. (2002)  [6] put forward a conjecture concerning the minimum Randi? index among alln-vertex connected graphs with the minimum degree at least k. In this work, we show that the conjecture is true given the graph contains k vertices of degree n?1. Further, it is true among k-trees.  相似文献   

6.
The higher Randi? index Rt(G) of a simple graph G is defined as
  相似文献   

7.
The Randi? index of a graph G is defined as , where d(u) is the degree of vertex u and the summation goes over all pairs of adjacent vertices u, v. A conjecture on R(G) for connected graph G is as follows: R(G)≥r(G)−1, where r(G) denotes the radius of G. We proved that the conjecture is true for biregular graphs, connected graphs with order n≤10 and tricyclic graphs.  相似文献   

8.
9.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

10.
11.
12.
13.
14.
15.
Let G be a simple connected graph and α be a given real number. The zeroth-order general Randi? index of G is defined as 0 R α (G)=∑ vV(G)[d G (v)] α , where d G (v) denotes the degree of the vertex v of G. In this paper, for any α>2, we give sharp upper bounds of the zeroth-order general Randi? index 0 R α of all conjugated tricyclic graphs with 2m vertices.  相似文献   

16.
17.
《Discrete Mathematics》2023,346(6):113347
We study the relation between the correspondence chromatic number, also known as the DP-chromatic number, and the Alon–Tarsi number, both upper bounds on the list chromatic number of a graph. There are many graphs with Alon–Tarsi number greater than the correspondence chromatic number. We present here a family of graphs with arbitrary Alon–Tarsi number, with correspondence chromatic number one larger.  相似文献   

18.
19.
20.
Let G be a simple connected graph and α be a given real number. The zeroth-order general Randi? index of 0Rα(G) is defined as ∑vV(G)[dG(v)]α, where dG(v) denotes the degree of the vertex v of G. In this paper, for any α(≠0,1), we give sharp bounds of the zeroth-order general Randi? index 0Rα of all bicyclic graphs with n vertices and k pendent vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号