首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Zhiquan Hu  Hao Li 《Discrete Mathematics》2009,309(5):1020-1024
For a graph G, let σ2(G) denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let σ2(G)=). In this paper, we show the following two results: (i) Let G be a graph of order n≥4k+3 with σ2(G)≥n and let F be a matching of size k in G such that GF is 2-connected. Then GF is hamiltonian or GK2+(K2Kn−4) or ; (ii) Let G be a graph of order n≥16k+1 with σ2(G)≥n and let F be a set of k edges of G such that GF is hamiltonian. Then GF is either pancyclic or bipartite. Examples show that first result is the best possible.  相似文献   

2.
Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph Theory and Algorithms, vol. I, New Issues Press, Kalamazoo, MI, 1999, pp. 451-460] considered a variation of the classical Turán-type extremal problems as follows: for any simple graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2+?+dnσ(H,n) has a realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph on ktkr+r vertices, that is, the graph of k copies of Kt meeting in a common r set, where Kt is the complete graph on t vertices and 0≤rt. In this paper, we determine σ(Ft,r,k,n) for k≥2, t≥3, 1≤rt−2 and n sufficiently large.  相似文献   

3.
A coloring of a graph G is injective if its restriction to the neighborhood of any vertex is injective. The injective chromatic numberχi(G) of a graph G is the least k such that there is an injective k-coloring. In this paper we prove that if G is a planar graph with girth g and maximum degree Δ, then (1) χi(G)=Δ if either g≥20 and Δ≥3, or g≥7 and Δ≥71; (2) χi(G)≤Δ+1 if g≥11; (3) χi(G)≤Δ+2 if g≥8.  相似文献   

4.
We give sufficient conditions for a graph to have degree bounded trees. Let G be a connected graph and A a vertex subset of G. We denote by σk(A) the minimum value of the degree sum in G of any k independent vertices in A and by w(GA) the number of components in the induced subgraph GA. Our main results are the following: (i) If σk(A)≥|V(G)|−1, then G contains a tree T with maximum degree at most k and AV(T). (ii) If σkw(GA)(A)≥|A|−1, then G contains a spanning tree T such that dT(x)≤k for every xA. These are generalizations of the result by Win [S. Win, Existenz von Gerüsten mit Vorgeschriebenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 263-267] and the degree conditions are sharp.  相似文献   

5.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

6.
Kenta Ozeki 《Discrete Mathematics》2009,309(13):4266-4269
Win, in 1975, and Jackson and Wormald, in 1990, found the best sufficient conditions on the degree sum of a graph to guarantee the properties of “having a k-tree” and “having a k-walk”, respectively. The property of “being prism hamiltonian” is an intermediate property between “having a 2-tree” and “having a 2-walk”. Thus, it is natural to ask what is the best degree sum condition for graphs to be prism hamiltonian. As an answer to this problem, in this paper, we show that a connected graph G of order n with σ3(G)≥n is prism hamiltonian. The degree sum condition “σ3(G)≥n” is best possible.  相似文献   

7.
Connectivity of iterated line graphs   总被引:1,自引:0,他引:1  
Let k≥0 be an integer and Lk(G) be the kth iterated line graph of a graph G. Niepel and Knor proved that if G is a 4-connected graph, then κ(L2(G))≥4δ(G)−6. We show that the connectivity of G can be relaxed. In fact, we prove in this note that if G is an essentially 4-edge-connected and 3-connected graph, then κ(L2(G))≥4δ(G)−6. Similar bounds are obtained for essentially 4-edge-connected and 2-connected (1-connected) graphs.  相似文献   

8.
For a graph G let μ(G) denote the cyclomatic number and let ν(G) denote the maximum number of edge-disjoint cycles of G.We prove that for every k≥0 there is a finite set P(k) such that every 2-connected graph G for which μ(G)−ν(G)=k arises by applying a simple extension rule to a graph in P(k). Furthermore, we determine P(k) for k≤2 exactly.  相似文献   

9.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

10.
The Grundy number of a graph G, denoted by Γ(G), is the largest k such that G has a greedyk-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this paper, we study the Grundy number of the lexicographic and cartesian products of two graphs in terms of the Grundy numbers of these graphs.Regarding the lexicographic product, we show that Γ(GΓ(H)≤Γ(G[H])≤2Γ(G)−1(Γ(H)−1)+Γ(G). In addition, we show that if G is a tree or Γ(G)=Δ(G)+1, then Γ(G[H])=Γ(GΓ(H). We then deduce that for every fixed c≥1, given a graph G, it is CoNP-Complete to decide if Γ(G)≤c×χ(G) and it is CoNP-Complete to decide if Γ(G)≤c×ω(G).Regarding the cartesian product, we show that there is no upper bound of Γ(GH) as a function of Γ(G) and Γ(H). Nevertheless, we prove that Γ(GH)≤Δ(G)⋅2Γ(H)−1+Γ(H).  相似文献   

11.
A graph H is imbedded in a graph G if a subset of the vertices of G determines a subgraph isomorphic to H. If λ(G) is the least eigenvalue of G and kR(H) = lim supd→∞ {λ(G)| H imbedded in G; G regular and connected; diam(G) > d; deg(G) > d}, then λ(H) ? 2 ≤ kR(H) ≤ λ(H) with these bounds being the best possible. Given a graph H, there exist arbitrarily large families of isospectral graphs such that H can be imbedded in each member of the family.  相似文献   

12.
A set S of vertices in a graph G is a dominating set of G if every vertex of V(G)?S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ(G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3,P4,P5,C5} and {P1,P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let GL be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762] showed that if G is a connected graph of order n≥8 with δ(G)≥2, then γ(G)≤2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295] showed that if G is a graph of order n with δ(G)≥3, then γ(G)≤3n/8. As an application of Reed’s result, we show that if G is a graph of order n≥14 with δ(G)≥2, then .  相似文献   

13.
Equitable colorings of Kronecker products of graphs   总被引:1,自引:0,他引:1  
For a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xyE(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<jk. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by , is the minimum t such that G is equitably k-colorable for kt. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and when G and H are complete graphs, bipartite graphs, paths or cycles.  相似文献   

14.
Given two graphs G and H, let f(G,H) denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least rb(G,H)=f(G,H)+1 colors contains a rainbow copy of H, where a rainbow subgraph of an edge-colored graph is such that no two edges of it have the same color. The number rb(G,H) is called the rainbow number ofHwith respect toG, and simply called the bipartite rainbow number ofH if G is the complete bipartite graph Km,n. Erd?s, Simonovits and Sós showed that rb(Kn,K3)=n. In 2004, Schiermeyer determined the rainbow numbers rb(Kn,Kk) for all nk≥4, and the rainbow numbers rb(Kn,kK2) for all k≥2 and n≥3k+3. In this paper we will determine the rainbow numbers rb(Km,n,kK2) for all k≥1.  相似文献   

15.
We define by minc{u,v}∈E(G)|c(u)−c(v)| the min-costMC(G) of a graph G, where the minimum is taken over all proper colorings c. The min-cost-chromatic numberχM(G) is then defined to be the (smallest) number of colors k for which there exists a proper k-coloring c attaining MC(G). We give constructions of graphs G where χ(G) is arbitrarily smaller than χM(G). On the other hand, we prove that for every 3-regular graph G, χM(G)≤4 and for every 4-regular line graph G, χM(G)≤5. Moreover, we show that the decision problem whether χM(G)=k is -hard for k≥3.  相似文献   

16.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

17.
Improved bounds on coloring of graphs   总被引:1,自引:0,他引:1  
  相似文献   

18.
Let G be a graph of order n and k a positive integer. A set of subgraphs H={H1,H2,…,Hk} is called a k-degenerated cycle partition (abbreviated to k-DCP) of G if H1,…,Hk are vertex disjoint subgraphs of G such that and for all i, 1≤ik, Hi is a cycle or K1 or K2. If, in addition, for all i, 1≤ik, Hi is a cycle or K1, then H is called a k-weak cycle partition (abbreviated to k-WCP) of G. It has been shown by Enomoto and Li that if |G|=nk and if the degree sum of any pair of nonadjacent vertices is at least nk+1, then G has a k-DCP, except GC5 and k=2. We prove that if G is a graph of order nk+12 that has a k-DCP and if the degree sum of any pair of nonadjacent vertices is at least , then either G has a k-WCP or k=2 and G is a subgraph of K2Kn−2∪{e}, where e is an edge connecting V(K2) and V(Kn−2). By using this, we improve Enomoto and Li’s result for n≥max{k+12,10k−9}.  相似文献   

19.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

20.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号