首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
By a ball-covering B of a Banach space X, we mean that B is a collection of open (or closed) balls off the origin whose union contains the unit sphere SX of X; and X is said to have the ball-covering property (BCP) provided it admits a ball-covering by countably many balls. In this note we give a natural example showing that the ball-covering property of a Banach space is not inherited by its subspaces; and we present a sharp quantitative version of the recent Fonf and Zanco renorming result saying that if the dual X of X is w separable, then for every ε>0 there exist a (1+ε)-equivalent norm on X, and an R>0 such that in this new norm SX admits a ball-covering by countably many balls of radius R. Namely, we show that R=R(ε) can be taken arbitrarily close to (1+ε)/ε, and that for X=?1[0,1] the corresponding R cannot be equal to 1/ε. This gives the sharp order of magnitude for R(ε) as ε→0.  相似文献   

2.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

3.
For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance between any two distinct vertices from A is more than k. The packing chromatic number of G is the smallest integer m such that the vertex set of G can be partitioned as V1,V2,…,Vm where Vi is an i-packing for each i. It is proved that the planar triangular lattice T and the three-dimensional integer lattice Z3 do not have finite packing chromatic numbers.  相似文献   

4.
A graph G is Eulerian-connected if for any u and v in V(G), G has a spanning (u,v)-trail. A graph G is edge-Eulerian-connected if for any e and e in E(G), G has a spanning (e,e)-trail. For an integer r?0, a graph is called r-Eulerian-connected if for any XE(G) with |X|?r, and for any , G has a spanning (u,v)-trail T such that XE(T). The r-edge-Eulerian-connectivity of a graph can be defined similarly. Let θ(r) be the minimum value of k such that every k-edge-connected graph is r-Eulerian-connected. Catlin proved that θ(0)=4. We shall show that θ(r)=4 for 0?r?2, and θ(r)=r+1 for r?3. Results on r-edge-Eulerian connectivity are also discussed.  相似文献   

5.
Given two nonnegative integers s and t, a graph G is (s,t)-supereulerian if for any disjoint sets X,YE(G) with |X|≤s and |Y|≤t, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s,t)-supereulerian, for any pair of nonnegative integers s and t with s+tk−1. We further show that if s+tk and G is a connected, locally k-edge-connected graph, then for any disjoint sets X,YE(G) with |X|≤s and |Yt, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if GY is not contractible to K2 or to K2,l with l odd.  相似文献   

6.
In Iliadis (2005) [13] for an ordinal α the notion of the so-called (bn-Ind?α)-dimensional normal base C for the closed subsets of a space X was introduced. This notion is defined similarly to the classical large inductive dimension Ind. In this case we shall write here I(X,C)?α and say that the base dimension I of the space X by the normal base C is less than or equal to α. The classical large inductive dimension Ind of a normal space X, the large inductive dimension Ind0 of a Tychonoff space X defined independently by Charalambous and Filippov, as well as, the relative inductive dimension defined by Chigogidze for a subspace X of a Tychonoff space Y may be considered as the base dimension I of X by normal bases Z(X) (all closed subsets of X), Z(X) (all functionally closed subsets of X), and , respectively.In the present paper, we shall consider normal bases of spaces consisting of functionally closed subsets. In particular, we introduce new dimension invariant : for a space X, is the minimal element α of the class O∪{−1,∞}, where O is the class of all ordinals, for which there exists a normal base C on X consisting of functionally closed subsets such that I(X,C)?α. We prove that in the class of all completely regular spaces X of weight less than or equal to a given infinite cardinal τ such that there exist universal spaces. However, the following questions are open.(1) Are there universal elements in the class of all normal (respectively, of all compact) spaces X of weight ?τ with ?(2) Are there universal elements in the class of all Tychonoff (respectively, of all normal) spaces X of weight ?τ with Ind0(X)?nω? (Note that for a compact space X.)  相似文献   

7.
S. Mishra  S.B. Rao 《Discrete Mathematics》2006,306(14):1586-1594
In this paper we consider a graph optimization problem called minimum monopoly problem, in which it is required to find a minimum cardinality set SV, such that, for each uV, |N[u]∩S|?|N[u]|/2 in a given graph G=(V,E). We show that this optimization problem does not have a polynomial-time approximation scheme for k-regular graphs (k?5), unless P=NP. We show this by establishing two L-reductions (an approximation preserving reduction) from minimum dominating set problem for k-regular graphs to minimum monopoly problem for 2k-regular graphs and to minimum monopoly problem for (2k-1)-regular graphs, where k?3. We also show that, for tree graphs, a minimum monopoly set can be computed in linear time.  相似文献   

8.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

9.
Let X be a real reflexive Banach space with dual X. Let L:XD(L)→X be densely defined, linear and maximal monotone. Let T:XD(T)→X2, with 0∈D(T) and 0∈T(0), be strongly quasibounded and maximal monotone, and C:XD(C)→X bounded, demicontinuous and of type (S+) w.r.t. D(L). A new topological degree theory has been developed for the sum L+T+C. This degree theory is an extension of the Berkovits-Mustonen theory (for T=0) and an improvement of the work of Addou and Mermri (for T:XX2 bounded). Unbounded maximal monotone operators with are strongly quasibounded and may be used with the new degree theory.  相似文献   

10.
In this paper, we will study the isometric extension problem for L1-spaces and prove that every surjective isometry from the unit sphere of L1(μ) onto that of a Banach space E can be extended to a linear surjective isometry from L1(μ) onto E. Moreover, we introduce the approximate isometric extension problem and show that, if E and F are Banach spaces and E satisfies the property (m) (special cases are L(Γ), C0(Ω) and L(μ)), then every bijective ?-isometry between the unit spheres of E and F can be extended to a bijective 5?-isometry between their closed unit balls. At last, we will give an example to show that the surjectivity assumption cannot be omitted. Using this, we solve the non-surjective isometric extension problem in the negative.  相似文献   

11.
Let X be a compact metric space, and Homeo(X) be the group consisting of all homeomorphisms from X to X. A subgroup H of Homeo(X) is said to be transitive if there exists a point xX such that {k(x):kH} is dense in X. In this paper we show that, if X=G is a connected graph, then the following five conditions are equivalent: (1) Homeo(G) has a transitive commutative subgroup; (2) G admits a transitive Z2-action; (3) G admits an edge-transitive commutative group action; (4) G admits an edge-transitive Z2-action; (5) G is a circle, or a k-fold loop with k?2, or a k-fold polygon with k?2, or a k-fold complete bigraph with k?1. As a corollary of this result, we show that a finite connected simple graph whose automorphism group contains an edge-transitive commutative subgroup is either a cycle or a complete bigraph.  相似文献   

12.
Let A be the generator of a cosine function on a Banach space X. In many cases, for example if X is a UMD-space, A+B generates a cosine function for each BL(D((ωA)1/2),X). If A is unbounded and , then we show that there exists a rank-1 operator BL(D(γ(ωA)),X) such that A+B does not generate a cosine function. The proof depends on a modification of a Baire argument due to Desch and Schappacher. It also allows us to prove the following. If A+B generates a distribution semigroup for each operator BL(D(A),X) of rank-1, then A generates a holomorphic C0-semigroup. If A+B generates a C0-semigroup for each operator BL(D(γ(ωA)),X) of rank-1 where 0<γ<1, then the semigroup T generated by A is differentiable and ‖T(t)‖=O(tα) as t↓0 for any α>1/γ. This is an approximate converse of a perturbation theorem for this class of semigroups.  相似文献   

13.
If (Tt)t?0 is a bounded C0-semigroup in a Banach space X and there exists a compact subset KX such that
  相似文献   

14.
A subset X of an abelian group Γ, written additively, is a Sidon set of orderh if whenever {(ai,mi):iI} and {(bj,nj):jJ} are multisets of size h with elements in X and ∑iImiai=∑jJnjbj, then {(ai,mi):iI}={(bj,nj):jJ}. The set X is a generalized Sidon set of order(h,k) if whenever two such multisets have the same sum, then their multiset intersection has size at least k. It is proved that if X is a generalized Sidon set of order (2h−1,h−1), then the maximal Sidon sets of order h contained in X have the same cardinality. Moreover, X is a matroid where the independent subsets of X are the Sidon sets of order h.  相似文献   

15.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-γ-critical graphs remains far from completely understood when k?3.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G) and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G). More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15; N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11-32], we explored the toughness of 3-γ-critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3-γ-critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.  相似文献   

16.
Degree conditions for group connectivity   总被引:1,自引:0,他引:1  
Let G be a 2-edge-connected simple graph on n≥13 vertices and A an (additive) abelian group with |A|≥4. In this paper, we prove that if for every uvE(G), max{d(u),d(v)}≥n/4, then either G is A-connected or G can be reduced to one of K2,3,C4 and C5 by repeatedly contracting proper A-connected subgraphs, where Ck is a cycle of length k. We also show that the bound n≥13 is the best possible.  相似文献   

17.
18.
Given a graph G, a function f:V(G)→{1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000.  相似文献   

19.
An L(h,k)-labeling of a graph G is an integer labeling of vertices of G, such that adjacent vertices have labels which differ by at least h, and vertices at distance two have labels which differ by at least k. The span of an L(h,k)-labeling is the difference between the largest and the smallest label. We investigate L(h,k)-labelings of trees of maximum degree Δ, seeking those with small span. Given Δ, h and k, span λ is optimal for the class of trees of maximum degree Δ, if λ is the smallest integer such that every tree of maximum degree Δ has an L(h,k)-labeling with span at most λ. For all parameters Δ,h,k, such that h<k, we construct L(h,k)-labelings with optimal span. We also establish optimal span of L(h,k)-labelings for stars of arbitrary degree and all values of h and k.  相似文献   

20.
A k-dimensional box is the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V,E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n0.5−?) for any ?>0 unless NP=ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n0.5−?) for any ?>0 unless NP=ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号