首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1954, Tutte conjectured that every bridgeless graph has a nowhere-zero 5-flow. Let ω(G) be the minimum number of odd cycles in a 2-factor of a bridgeless cubic graph G. Tutte’s conjecture is equivalent to its restriction to cubic graphs with ω≥2. We show that if a cubic graph G has no edge cut with fewer than edges that separates two odd cycles of a minimum 2-factor of G, then G has a nowhere-zero 5-flow. This implies that if a cubic graph G is cyclically n-edge connected and , then G has a nowhere-zero 5-flow.  相似文献   

2.
A k-dimensional box is the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G)≤t+⌈log(nt)⌉−1 and , where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds.F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, and , where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then and this bound is tight. We also show that if G is a bipartite graph then . We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to . Interestingly, if boxicity is very close to , then chromatic number also has to be very high. In particular, we show that if , s≥0, then , where χ(G) is the chromatic number of G.  相似文献   

3.
Tutte [W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-20] conjectured that every bridgeless Petersen-minor free graph admits a nowhere-zero 4-flow. Let be the graph obtained from the Petersen graph by contracting μ edges from a perfect matching. In this paper we prove that every bridgeless -minor free graph admits a nowhere-zero 4-flow.  相似文献   

4.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

5.
In this paper we show that if a square transversal design TDλ[k;u], say D(=(P,B)), admits a class semiregular automorphism group G of order s, then we have a by matrix M with entries from G∪{0} satisfying , where , if i=j, and , otherwise. As an application of (*), we show that any symmetric TD2[12;6] admits no nontrivial elation. We also obtain a result that gives us a restriction on the existence of elations of putative projective planes of composite order.  相似文献   

6.
A relationship is considered between an f-factor of a graph and that of its vertex-deleted subgraphs. Katerinis [Some results on the existence of 2n-factors in terms of vertex-deleted subgraphs, Ars Combin. 16 (1983) 271-277] proved that for even integer k, if G-x has a k-factor for each xV(G), then G has a k-factor. Enomoto and Tokuda [Complete-factors and f-factors, Discrete Math. 220 (2000) 239-242] generalized Katerinis’ result to f-factors, and proved that if G-x has an f-factor for each xV(G), then G has an f-factor for an integer-valued function f defined on V(G) with even. In this paper, we consider a similar problem to that of Enomoto and Tokuda, where for several vertices x we do not have to know whether G-x has an f-factor. Let G be a graph, X be a set of vertices, and let f be an integer-valued function defined on V(G) with even, |V(G)-X|?2. We prove that if and if G-x has an f-factor for each xV(G)-X, then G has an f-factor. Moreover, if G excludes an isolated vertex, then we can replace the condition with . Furthermore the condition will be when |X|=1.  相似文献   

7.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

8.
On signed cycle domination in graphs   总被引:2,自引:0,他引:2  
Baogen Xu 《Discrete Mathematics》2009,309(4):1007-1387
Let G=(V,E) be a graph, a function f:E→{−1,1} is said to be an signed cycle dominating function (SCDF) of G if ∑eE(C)f(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as is an SCDF of G}. In this paper, we obtain bounds on , characterize all connected graphs G with , and determine the exact value of for some special classes of graphs G. In addition, we pose some open problems and conjectures.  相似文献   

9.
Let G be a vertex-disjoint union of directed cycles in the complete directed graph Dt, let |E(G)| be the number of directed edges of G and suppose or if t=5, and if t=6. It is proved in this paper that for each positive integer t, there exist -decompositions for DtG if and only if .  相似文献   

10.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

11.
Y. Caro 《Discrete Mathematics》2010,310(4):742-747
For a graph G, denote by fk(G) the smallest number of vertices that must be deleted from G so that the remaining induced subgraph has its maximum degree shared by at least k vertices. It is not difficult to prove that there are graphs for which already , where n is the number of vertices of G. It is conjectured that for every fixed k. We prove this for k=2,3. While the proof for the case k=2 is easy, already the proof for the case k=3 is considerably more difficult. The case k=4 remains open.A related parameter, sk(G), denotes the maximum integer m so that there are k vertex-disjoint subgraphs of G, each with m vertices, and with the same maximum degree. We prove that for every fixed k, sk(G)≥n/ko(n). The proof relies on probabilistic arguments.  相似文献   

12.
For a connected graph G=(V,E), an edge set SE is a k-restricted-edge-cut, if G-S is disconnected and every component of G-S has at least k vertices. The k-restricted-edge-connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted-edge-cut. The k-isoperimetric-edge-connectivity is defined as , where is the set of edges with one end in U and the other end in . In this note, we give some degree conditions for a graph to have optimal λk and/or γk.  相似文献   

13.
Acyclic edge colouring of planar graphs without short cycles   总被引:1,自引:0,他引:1  
Let G=(V,E) be any finite graph. A mapping C:E→[k] is called an acyclic edgek-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by .In 2001, Alon et al. conjectured that for any graph G it holds that ; here Δ(G) stands for the maximum degree of G.In this paper we prove this conjecture for planar graphs with girth at least 5 and for planar graphs not containing cycles of length 4,6,8 and 9. We also show that if G is planar with girth at least 6. Moreover, we find an upper bound for the acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that if G is such a graph, then .  相似文献   

14.
K.L. Ng 《Discrete Mathematics》2009,309(6):1603-1610
For a connected graph G containing no bridges, let D(G) be the family of strong orientations of G; and for any DD(G), we denote by d(D) the diameter of D. The orientation number of G is defined by . Let G(p,q;m) denote the family of simple graphs obtained from the disjoint union of two complete graphs Kp and Kq by adding m edges linking them in an arbitrary manner. The study of the orientation numbers of graphs in G(p,q;m) was introduced by Koh and Ng [K.M. Koh, K.L. Ng, The orientation number of two complete graphs with linkages, Discrete Math. 295 (2005) 91-106]. Define and . In this paper we prove a conjecture on α proposed by K.M. Koh and K.L. Ng in the above mentioned paper, for qp+4.  相似文献   

15.
For a simple path Pr on r vertices, the square of Pr is the graph on the same set of vertices of Pr, and where every pair of vertices of distance two or less in Pr is connected by an edge. Given a (p,q)-graph G with p vertices and q edges, and a nonnegative integer k, G is said to be k-edge-graceful if the edges can be labeled bijectively by k,k+1,…,k+q−1, so that the induced vertex sums are pairwise distinct, where the vertex sum at a vertex is the sum of the labels of all edges incident to such a vertex, modulo the number of vertices p. We call the set of all such k the edge-graceful spectrum of G, and denote it by egI(G). In this article, the edge-graceful spectrum for the square of paths is completely determined for odd r.  相似文献   

16.
The Hadwiger number η(G) of a graph G is the largest integer h such that the complete graph on h nodes Kh is a minor of G. Equivalently, η(G) is the largest integer such that any graph on at most η(G) nodes is a minor of G. The Hadwiger's conjecture states that for any graph G, η(G)?χ(G), where χ(G) is the chromatic number of G. It is well-known that for any connected undirected graph G, there exists a unique prime factorization with respect to Cartesian graph products. If the unique prime factorization of G is given as G1G2□?□Gk, where each Gi is prime, then we say that the product dimension of G is k. Such a factorization can be computed efficiently.In this paper, we study the Hadwiger's conjecture for graphs in terms of their prime factorization. We show that the Hadwiger's conjecture is true for a graph G if the product dimension of G is at least . In fact, it is enough for G to have a connected graph M as a minor whose product dimension is at least , for G to satisfy the Hadwiger's conjecture. We show also that if a graph G is isomorphic to Fd for some F, then η(G)?χ(G)⌊(d-1)/2⌋, and thus G satisfies the Hadwiger's conjecture when d?3. For sufficiently large d, our lower bound is exponentially higher than what is implied by the Hadwiger's conjecture.Our approach also yields (almost) sharp lower bounds for the Hadwiger number of well-known graph products like d-dimensional hypercubes, Hamming graphs and the d-dimensional grids. In particular, we show that for the d-dimensional hypercube Hd, . We also derive similar bounds for Gd for almost all G with n nodes and at least edges.  相似文献   

17.
Liying Kang 《Discrete Mathematics》2006,306(15):1771-1775
A function f defined on the vertices of a graph G=(V,E),f:V→{-1,0,1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by , of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound on of k-partite graphs is given.  相似文献   

18.
A graph G is induced matching extendable (shortly, IM-extendable), if every induced matching of G is included in a perfect matching of G. A graph G is claw-free, if G does not contain any induced subgraph isomorphic to K1,3. The kth power of a graph G, denoted by Gk, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them in G is at most k. In this paper, the 4-regular claw-free IM-extendable graphs are characterized. It is shown that the only 4-regular claw-free connected IM-extendable graphs are , and Tr, r?2, where Tr is the graph with 4r vertices ui,vi,xi,yi, 1?i?r, such that for each i with 1?i?r, {ui,vi,xi,yi} is a clique of Tr and . We also show that a 4-regular strongly IM-extendable graph must be claw-free. As a consequence, the only 4-regular strongly IM-extendable graphs are K4×K2, and .  相似文献   

19.
A graph G = (V, E) admits a nowhere-zero k-flow if there exists an orientation H = (V, A) of G and an integer flow ${\varphi:A \to \mathbb{Z}}$ such that for all ${a \in A, 0 < |\varphi(a)| < k}$ . Tutte conjectured that every bridgeless graphs admits a nowhere-zero 5-flow. A (1,2)-factor of G is a set ${F \subseteq E}$ such that the degree of any vertex v in the subgraph induced by F is 1 or 2. Let us call an edge of G, F-balanced if either it belongs to F or both its ends have the same degree in F. Call a cycle of G F-even if it has an even number of F-balanced edges. A (1,2)-factor F of G is even if each cycle of G is F-even. The main result of the paper is that a cubic graph G admits a nowhere-zero 5-flow if and only if G has an even (1,2)-factor.  相似文献   

20.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号