首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cyclic face 2‐colourable triangulation of the complete graph Kn in an orientable surface exists for n ≡ 7 (mod 12). Such a triangulation corresponds to a cyclic bi‐embedding of a pair of Steiner triple systems of order n, the triples being defined by the faces in each of the two colour classes. We investigate in the general case the production of such bi‐embeddings from solutions to Heffter's first difference problem and appropriately labelled current graphs. For n = 19 and n = 31 we give a complete explanation for those pairs of Steiner triple systems which do not admit a cyclic bi‐embedding and we show how all non‐isomorphic solutions may be identified. For n = 43 we describe the structures of all possible current graphs and give a more detailed analysis in the case of the Heawood graph. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 92–110, 2002; DOI 10.1002/jcd.10001  相似文献   

2.
We construct face two-colourable triangulations of the graph 2K n in an orientable surface; equivalently biembeddings of two twofold triple systems of order n, for all n ≡ 4 (mod 12). The biembeddings have a cyclic automorphism and the construction employs index 1 current graphs.  相似文献   

3.
A Steiner triple system of order n (STS(n)) is said to be embeddable in an orientable surface if there is an orientable embedding of the complete graph Kn whose faces can be properly 2-colored (say, black and white) in such a way that all black faces are triangles and these are precisely the blocks of the STS(n). If, in addition, all white faces are triangular, then the collection of all white triangles forms another STS(n); the pair of such STS(n)s is then said to have an (orientable) bi-embedding. We study several questions related to embeddings and bi-embeddings of STSs. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 325–336, 1998  相似文献   

4.
 It was shown by Gerhard Ringel that one of the three non-isomorphic Steiner triple systems of order 15 having an automorphism of order 5 may be bi-embedded as the faces of a face 2-colourable triangular embedding of K 15 in a suitable orientable surface. Ringel's bi-embedding was obtained from an appropriate current graph. In a recent paper, the present authors showed that a second STS(15) of this type may also be bi-embedded. In the present paper we show that this second bi-embedding may also be obtained from a current graph. Furthermore, we exhibit a third current graph which yields a bi-embedding of the third STS(15) of this type. Received: October 5, 1998  相似文献   

5.
In this paper, we show that there exists an automorphism free latin square graph of order n for all n ? 7 and that the number of such graphs goes to infinity with n. These results are then applied to the construction of automorphism free Steiner triple systems.  相似文献   

6.
We prove a theorem that for an integer s?0, if 12s+7 is a prime number, then the number of nonisomorphic face 3-colorable nonorientable triangular embeddings of Kn, where n=(12s+7)(6s+7), is at least . By some number-theoretic arguments there are an infinite number of integers s satisfying the hypothesis of the theorem. The theorem is the first known example of constructing at least 2αn?+o(n?), ?>1, nonisomorphic nonorientable triangular embeddings of Kn for n=6t+1, . To prove the theorem, we use a new approach to constructing nonisomorphic triangular embeddings of complete graphs. The approach combines a cut-and-paste technique and the index one current graph technique. A new connection between Steiner triple systems and constructing triangular embeddings of complete graphs is given.  相似文献   

7.
In this paper,the problem of construction of exponentially many minimum genus embeddings of complete graphs in surfaces are studied.There are three approaches to solve this problem.The first approach is to construct exponentially many graphs by the theory of graceful labeling of paths;the second approach is to find a current assignment of the current graph by the theory of current graph;the third approach is to find exponentially many embedding(or rotation) schemes of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph.According to this three approaches,we can construct exponentially many minimum genus embeddings of complete graph K_(12s+8) in orientable surfaces,which show that there are at least 10/3×(200/9)~s distinct minimum genus embeddings for K_(12s+8) in orientable surfaces.We have also proved that K_(12s+8) has at least 10/3×(200/9)~s distinct minimum genus embeddings in non-orientable surfaces.  相似文献   

8.
We give a construction of a 2-(mn2+1,mn,(n+1)(mn−1)) design starting from a Steiner system S(2,m+1,mn2+1) and an affine plane of order n. This construction is applied to known classes of Steiner systems arising from affine and projective geometries, Denniston designs, and unitals. We also consider the extendability of these designs to 3-designs.  相似文献   

9.
Perfect codes and optimal anticodes in the Grassman graph Gq(nk) are examined. It is shown that the vertices of the Grassman graph cannot be partitioned into optimal anticodes, with a possible exception when n=2k. We further examine properties of diameter perfect codes in the graph. These codes are known to be similar to Steiner systems. We discuss the connection between these systems and “real” Steiner systems.  相似文献   

10.
A hexagon triple is the graph consisting of the three triangles (triples) {a,b,c},{c,d,e}, and {e,f,a}, where a,b,c,d,e, and f are distinct. The triple {a,c,e} is called an inside triple. A hexagon triple system of order n is a pair (X,H) where H is a collection of edge disjoint hexagon triples which partitions the edge set of Kn with vertex set X. The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3n.  相似文献   

11.
We attach a graph to every Steiner triple system. The chromatic number of this graph is related to the possibility of extending the triple system to a quadruple system. For example, the triple systems with chromatic number one are precisely the classical systems of points and lines of a projective geometry over the two-element field, the Hall triple systems have chromatic number three (and, as is well-known, are extendable) and all Steiner triple systems whose graph has chromatic number two are extendable. We also give a configurational characterization of the Hall triple systems in terms of mitres.  相似文献   

12.
Let D(v) denote the maximum number of pairwise disjoint Steiner triple systems of order v. In this paper, we prove that if n is an odd number, there exist 12 mutually orthogonal Latin squares of order n and D(1 + 2n) = 2n ? 1, then D(1 + 12n) = 12n ? 1.  相似文献   

13.
Higman asked which block graphs of Steiner triple systems of order v satisfy the 4-vertex condition and left the cases v = 9, 13, 25 unsettled.We give a complete answer to this question by showing that the affine plane of order 3 and the binary projective spaces are the only such systems. The major part of the proof is to show that no block graph of a Steiner triple system of order 25 satisfies the 4-vertex condition.  相似文献   

14.
A set of n ? 2 disjoint Steiner triple systems on n objects is constructed whenever n has the property that the order of 2 modulo n ? 2 is an odd number.  相似文献   

15.
In this paper we compute the orientable genus of the line graph of a graph G, when G is a tree and a 2-edge connected graph, all the vertices of which have their degrees equal to 2, 3, 6, or 11 modulo 12, and either G can be imbedded with triangular faces only or G is a bipartite graph which can be imbedded with squares only as faces. In the other cases, we give an upper bound of the genus of line graphs. In this way, we solve the question of the Hamiltonian genus of the complete graph Kn, for every n ≥ 3.  相似文献   

16.
Orientable triangular embeddings of the complete tripartite graph Kn,n,n correspond to biembeddings of Latin squares. We show that if n is prime there are at least enlnn-n(1+o(1)) nonisomorphic biembeddings of cyclic Latin squares of order n. If n=kp, where p is a large prime number, then the number of nonisomorphic biembeddings of cyclic Latin squares of order n is at least eplnp-p(1+lnk+o(1)). Moreover, we prove that for every n there is a unique regular triangular embedding of Kn,n,n in an orientable surface.  相似文献   

17.
18.
We give the first known examples of 6-sparse Steiner triple systems by constructing 29 such systems in the residue class 7 modulo 12, with orders ranging from 139 to 4447. We then present a recursive construction which establishes the existence of 6-sparse systems for an infinite set of orders. Observations are also made concerning existing construction methods for perfect Steiner triple systems, and we give a further example of such a system. This has order 135,859 and is only the fourteenth known. Finally, we present a uniform Steiner triple system of order 180,907.  相似文献   

19.
The unique Steiner triple system of order 7 has a point-block incidence graph known as the Heawood graph. Motivated by questions in combinatorial matrix theory, we consider the problem of constructing a faithful orthogonal representation of this graph, i.e., an assignment of a vector in Cd to each vertex such that two vertices are adjacent precisely when assigned nonorthogonal vectors. We show that d=10 is the smallest number of dimensions in which such a representation exists, a value known as the minimum semidefinite rank of the graph, and give such a representation in 10 real dimensions. We then show how the same approach gives a lower bound on this parameter for the incidence graph of any Steiner triple system, and highlight some questions concerning the general upper bound.  相似文献   

20.
A Steiner pentagon system is a pair (Kn, P) where Kn isthe complete undirected graph on n vertices. P is a collection of edge-disjoint pentagons which partition Kn, and such that every part of distinct vertices of Kn is joined by a path of length two in exactly one pentagon of the collection P. The number n is called the order of the system. This paper gives a somplete solution of the existence problem of Steiner pentagon systems. In particular it is shown that the spectrum for Steiner pentagon systems (=the set of all orders for which a Steiner pentagon system exists) is precisely the set of all n ≡ 1 or 5 (mod 10), except 15, for which no such system exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号