首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

2.
Alspach conjectured that any 2k-regular connected Cayley graph on a finite abelian group A has a hamiltonian decomposition. In this paper, the conjecture is shown true if k=3, and the order of A is odd.  相似文献   

3.
We give a decomposition formula for the Bartholdi zeta function of a graph G which is partitioned into some irregular coverings. As a corollary, we obtain a decomposition formula for the Bartholdi zeta function of G which is partitioned into some regular coverings.  相似文献   

4.
The existence of graph designs for the two nonisomorphic graphs on five vertices and eight edges is determined in the case of index one, with three possible exceptions in total. It is established that for the unique graph with vertex sequence (3, 3, 3, 3, 4), a graph design of order n exists exactly when and n≠16, with the possible exception of n=48. For the unique graph with vertex sequence (2,3,3,4,4), a graph design of order n exists exactly when , with the possible exceptions of n∈{32,48}.  相似文献   

5.
A graph G is 2-stratified if its vertex set is partitioned into two nonempty classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of F in G rooted at v. In this paper, we survey recent results on the F-domination number for various 2-stratified graphs F.  相似文献   

6.
Let G=(V,E) be a finite, simple and non-empty (p,q)-graph of order p and size q. An (a,d)-vertex-antimagic total labeling is a bijection f from V(G)∪E(G) onto the set of consecutive integers 1,2,…,p+q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f(xy) assigned to all edges xy incident to vertex x together with the value assigned to x itself, i.e. f(x). Such a labeling is called super if the smallest possible labels appear on the vertices.In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs.  相似文献   

7.
We give the Ramsey number for a disjoint union of some G-good graphs versus a graph G generalizing the results of Stahl (1975) [5] and Baskoro et al. (2006) [1] and the previous result of the author Bielak (2009) [2]. Moreover, a family of G-good graphs with s(G)>1 is presented.  相似文献   

8.
Let m be a positive integer and let G be a graph. We consider the question: can the edge set E(G) of G be expressed as the union of a set M of matchings of G each of which has size exactly m? If this happens, we say that G is [m]-coverable and we call M an [m]-covering of G. It is interesting to consider minimum[m]-coverings, i.e. [m]-coverings containing as few matchings as possible. Such [m]-coverings will be called excessive[m]-factorizations. The number of matchings in an excessive [m]-factorization is a graph parameter which will be called the excessive[m]-index and denoted by . In this paper we begin the study of this new parameter as well as of a number of other related graph parameters.  相似文献   

9.
A graph X, with a subgroup G of the automorphism group of X, is said to be (G,s)-transitive, for some s≥1, if G is transitive on s-arcs but not on (s+1)-arcs, and s-transitive if it is -transitive. Let X be a connected (G,s)-transitive graph, and Gv the stabilizer of a vertex vV(X) in G. If X has valency 5 and Gv is solvable, Weiss [R.M. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48] proved that s≤3, and in this paper we prove that Gv is isomorphic to the cyclic group Z5, the dihedral group D10 or the dihedral group D20 for s=1, the Frobenius group F20 or F20×Z2 for s=2, or F20×Z4 for s=3. Furthermore, it is shown that for a connected 1-transitive Cayley graph of valency 5 on a non-abelian simple group G, the automorphism group of is the semidirect product , where R(G) is the right regular representation of G and .  相似文献   

10.
Given two nonnegative integers s and t, a graph G is (s,t)-supereulerian if for any disjoint sets X,YE(G) with |X|≤s and |Y|≤t, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s,t)-supereulerian, for any pair of nonnegative integers s and t with s+tk−1. We further show that if s+tk and G is a connected, locally k-edge-connected graph, then for any disjoint sets X,YE(G) with |X|≤s and |Yt, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if GY is not contractible to K2 or to K2,l with l odd.  相似文献   

11.
We prove that for every graph H with the minimum degree δ?5, the third iterated line graph L3(H) of H contains as a minor. Using this fact we prove that if G is a connected graph distinct from a path, then there is a number kG such that for every i?kG the i-iterated line graph of G is -linked. Since the degree of Li(G) is even, the result is best possible.  相似文献   

12.
S. Mishra  S.B. Rao 《Discrete Mathematics》2006,306(14):1586-1594
In this paper we consider a graph optimization problem called minimum monopoly problem, in which it is required to find a minimum cardinality set SV, such that, for each uV, |N[u]∩S|?|N[u]|/2 in a given graph G=(V,E). We show that this optimization problem does not have a polynomial-time approximation scheme for k-regular graphs (k?5), unless P=NP. We show this by establishing two L-reductions (an approximation preserving reduction) from minimum dominating set problem for k-regular graphs to minimum monopoly problem for 2k-regular graphs and to minimum monopoly problem for (2k-1)-regular graphs, where k?3. We also show that, for tree graphs, a minimum monopoly set can be computed in linear time.  相似文献   

13.
We study degree sequences for simplicial posets and polyhedral complexes, generalizing the well-studied graphical degree sequences. Here we extend the more common generalization of vertex-to-facet degree sequences by considering arbitrary face-to-flag degree sequences. In particular, these may be viewed as natural refinements of the flag f-vector of the poset. We investigate properties and relations of these generalized degree sequences, proving linear relations between flag degree sequences in terms of the composition of rank jumps of the flag. As a corollary, we recover an f-vector inequality on simplicial posets first shown by Stanley.  相似文献   

14.
The pair length of a graph G is the maximum positive integer k, such that the vertex set of G can be partitioned into disjoint pairs {x,x}, such that d(x,x)?k for every xV(G) and xy is an edge of G whenever xy is an edge. Chen asked whether the pair length of the cartesian product of two graphs is equal to the sum of their pair lengths. Our aim in this short note is to prove this result.  相似文献   

15.
T?naz Ekim 《Discrete Mathematics》2009,309(19):5849-5856
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j+k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j,k)-graph. For a fixed j and k we consider the maximum order n where every graph of order n is a (j,k)-graph. The split-chromatic number of G is the minimum j where G is a (j,j)-graph. Further, the cochromatic number is the minimum j+k where G is a (j,k)-graph. We examine some relations between cochromatic, split-chromatic and chromatic numbers. We also consider some computational questions related to chordal graphs and cographs.  相似文献   

16.
We give a decomposition formula for the determinant on the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the determinant on the bond scattering matrix of a regular covering of G by means of its L-functions.  相似文献   

17.
A (d,1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d,1)-total labelling is the maximum difference between two labels. The (d,1)-total number, denoted , is defined to be the least span among all (d,1)-total labellings of G. We prove new upper bounds for , compute some for complete bipartite graphs Km,n, and completely determine all for d=1,2,3. We also propose a conjecture on an upper bound for in terms of the chromatic number and the chromatic index of G.  相似文献   

18.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

19.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

20.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-γ-critical graphs remains far from completely understood when k?3.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G) and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G). More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15; N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11-32], we explored the toughness of 3-γ-critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3-γ-critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号