首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

2.
On island sequences of labelings with a condition at distance two   总被引:1,自引:0,他引:1  
An L(2,1)-labeling of a graph G is a function f from the vertex set of G to the set of nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1, and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between the pair of vertices x,y. The lambda number of G, denoted λ(G), is the minimum range of labels used over all L(2,1)-labelings of G. An L(2,1)-labeling of G which achieves the range λ(G) is referred to as a λ-labeling. A hole of an L(2,1)-labeling is an unused integer within the range of integers used. The hole index of G, denoted ρ(G), is the minimum number of holes taken over all its λ-labelings. An island of a given λ-labeling of G with ρ(G) holes is a maximal set of consecutive integers used by the labeling. Georges and Mauro [J.P. Georges, D.W. Mauro, On the structure of graphs with non-surjective L(2,1)-labelings, SIAM J. Discrete Math. 19 (2005) 208-223] inquired about the existence of a connected graph G with ρ(G)≥1 possessing two λ-labelings with different ordered sequences of island cardinalities. This paper provides an infinite family of such graphs together with their lambda numbers and hole indices. Key to our discussion is the determination of the path covering number of certain 2-sparse graphs, that is, graphs containing no pair of adjacent vertices of degree greater than 2.  相似文献   

3.
The pair length of a graph G is the maximum positive integer k, such that the vertex set of G can be partitioned into disjoint pairs {x,x}, such that d(x,x)?k for every xV(G) and xy is an edge of G whenever xy is an edge. Chen asked whether the pair length of the cartesian product of two graphs is equal to the sum of their pair lengths. Our aim in this short note is to prove this result.  相似文献   

4.
Let G=(V,E) be a graph and let r≥1 be an integer. For a set DV, define Nr[x]={yV:d(x,y)≤r} and Dr(x)=Nr[x]∩D, where d(x,y) denotes the number of edges in any shortest path between x and y. D is known as an r-identifying code (r-locating-dominating set, respectively), if for all vertices xV (xV?D, respectively), Dr(x) are all nonempty and different. Roberts and Roberts [D.L. Roberts, F.S. Roberts, Locating sensors in paths and cycles: the case of 2-identifying codes, European Journal of Combinatorics 29 (2008) 72-82] provided complete results for the paths and cycles when r=2. In this paper, we provide results for a remaining open case in cycles and complete results in paths for r-identifying codes; we also give complete results for 2-locating-dominating sets in cycles, which completes the results of Bertrand et al. [N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European Journal of Combinatorics 25 (2004) 969-987].  相似文献   

5.
Given a graph G, a proper labelingf of G is a one-to-one function from V(G) onto {1,2,…,|V(G)|}. For a proper labeling f of G, the profile widthwf(v) of a vertex v is the minimum value of f(v)−f(x), where x belongs to the closed neighborhood of v. The profile of a proper labelingfofG, denoted by Pf(G), is the sum of all the wf(v), where vV(G). The profile ofG is the minimum value of Pf(G), where f runs over all proper labeling of G. In this paper, we show that if the vertices of a graph G can be ordered to satisfy a special neighborhood property, then so can the graph G×Qn. This can be used to determine the profile of Qn and Km×Qn.  相似文献   

6.
An L(p,q)-labeling of a graph G is an assignment f from vertices of G to the set of non-negative integers {0,1,…,λ} such that |f(u)−f(v)|≥p if u and v are adjacent, and |f(u)−f(v)|≥q if u and v are at distance 2 apart. The minimum value of λ for which G has L(p,q)-labeling is denoted by λp,q(G). The L(p,q)-labeling problem is related to the channel assignment problem for wireless networks.In this paper, we present a polynomial time algorithm for computing L(p,q)-labeling of a bipartite permutation graph G such that the largest label is at most (2p−1)+q(bc(G)−2), where bc(G) is the biclique number of G. Since λp,q(G)≥p+q(bc(G)−2) for any bipartite graph G, the upper bound is at most p−1 far from optimal.  相似文献   

7.
Pavol Hell 《Discrete Mathematics》2009,309(18):5703-5373
A sequence 〈d1,d2,…,dn〉 of non-negative integers is graphical if it is the degree sequence of some graph, that is, there exists a graph G on n vertices whose ith vertex has degree di, for 1≤in. The notion of a graphical sequence has a natural reformulation and generalization in terms of factors of complete graphs.If H=(V,E) is a graph and g and f are integer-valued functions on the vertex set V, then a (g,f)-factor of H is a subgraph G=(V,F) of H whose degree at each vertex vV lies in the interval [g(v),f(v)]. Thus, a (0,1)-factor is just a matching of H and a (1, 1)-factor is a perfect matching of H. If H is complete then a (g,f)-factor realizes a degree sequence that is consistent with the sequence of intervals 〈[g(v1),f(v1)],[g(v2),f(v2)],…,[g(vn),f(vn)]〉.Graphical sequences have been extensively studied and admit several elegant characterizations. We are interested in extending these characterizations to non-graphical sequences by introducing a natural measure of “near-graphical”. We do this in the context of minimally deficient (g,f)-factors of complete graphs. Our main result is a simple linear-time greedy algorithm for constructing minimally deficient (g,f)-factors in complete graphs that generalizes the method of Hakimi and Havel (for constructing (f,f)-factors in complete graphs, when possible). It has the added advantage of producing a certificate of minimum deficiency (through a generalization of the Erdös-Gallai characterization of (f,f)-factors in complete graphs) at no additional cost.  相似文献   

8.
For d≥1, s≥0 a (d,d+s)-graph is a graph whose degrees all lie in the interval {d,d+1,…,d+s}. For r≥1, a≥0 an (r,r+a)-factor of a graph G is a spanning (r,r+a)-subgraph of G. An (r,r+a)-factorization of a graph G is a decomposition of G into edge-disjoint (r,r+a)-factors. A graph is (r,r+a)-factorable if it has an (r,r+a)-factorization.We prove a number of results about (r,r+a)-factorizations of (d,d+s)-bipartite multigraphs and of (d,d+s)-pseudographs (multigraphs with loops permitted). For example, for t≥1 let β(r,s,a,t) be the least integer such that, if dβ(r,s,a,t) then every (d,d+s)-bipartite multigraph G is (r,r+a)-factorable with x(r,r+a)-factors for at least t different values of x. Then we show that
  相似文献   

9.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

10.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

11.
Let D be an edge-coloured digraph, V(D) will denote the set of vertices of D; a set NV(D) is said to be a kernel by monochromatic paths of D if it satisfies the following two conditions: For every pair of different vertices u,vN there is no monochromatic directed path between them and; for every vertex xV(D)−N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we consider some operations on edge-coloured digraphs, and some sufficient conditions for the existence or uniqueness of kernels by monochromatic paths of edge-coloured digraphs formed by these operations from another edge-coloured digraphs.  相似文献   

12.
Given a graph G, a function f:V(G)→{1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000.  相似文献   

13.
For aj,bj?1, j=1,2,…,d, we prove that the operator maps into itself for , where , and k(x,y)=φ(x,y)eig(x,y), φ(x,y) satisfies (1.2) (e.g. φ(x,y)=|xy|iτ,τ real) and the phase g(x,y)=xayb. We study operators with more general phases and for these operators we require that aj,bj>1, j=1,2,…,d, or al=bl?1 for some l∈{1,2,…,d}.  相似文献   

14.
An edge-ordering of a graph G=(V,E) is a one-to-one function f from E to a subset of the set of positive integers. A path P in G is called an f-ascent if f increases along the edge sequence of P. The heighth(f) of f is the maximum length of an f-ascent in G.In this paper we deal with computational problems concerning finding ascents in graphs. We prove that for a given edge-ordering f of a graph G the problem of determining the value of h(f) is NP-hard. In particular, the problem of deciding whether there is an f-ascent containing all the vertices of G is NP-complete. We also study several variants of this problem, discuss randomized and deterministic approaches and provide an algorithm for the finding of ascents of order at least k in graphs of order n in running time O(4knO(1)).  相似文献   

15.
Let jk≥0 be integers. An ?-L(j,k)-labelling of a graph G=(V,E) is a mapping ?:V→{0,1,2,…,?} such that |?(u)−?(v)|≥j if u,v are adjacent and |?(u)−?(v)|≥k if they are distance two apart. Let λj,k(G) be the smallest integer ? such that G admits an ?-L(j,k)-labelling. Define to be the smallest ? if G admits an ?-L(j,k)-labelling with ?(V)={0,1,2,…,?} and otherwise. An ?-cyclic L(j,k)-labelling is a mapping ?:VZ? such that |?(u)−?(v)|?j if u,v are adjacent and |?(u)−?(v)|?k if they are distance two apart, where |x|?=min{x,?x} for x between 0 and ?. Let σj,k(G) be the smallest ?−1 of such a labelling, and define similarly to . We determine λ2,0, , σ2,0 and for all Hamming graphs Kq1Kq2?Kqd (d≥2, q1q2≥?≥qd≥2) and give optimal labellings, with the only exception being for q≥4. We also prove the following “sandwich theorem”: If q1 is sufficiently large then for any graph G between Kq1Kq2 and Kq1Kq2?Kqd, and moreover we give a labelling which is optimal for these eight invariants simultaneously.  相似文献   

16.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

17.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

18.
Given a graph G, for an integer c∈{2,…,|V(G)|}, define λc(G)=min{|X|:XE(G),ω(GX)≥c}. For a graph G and for an integer c=1,2,…,|V(G)|−1, define,
  相似文献   

19.
A graph G is Eulerian-connected if for any u and v in V(G), G has a spanning (u,v)-trail. A graph G is edge-Eulerian-connected if for any e and e in E(G), G has a spanning (e,e)-trail. For an integer r?0, a graph is called r-Eulerian-connected if for any XE(G) with |X|?r, and for any , G has a spanning (u,v)-trail T such that XE(T). The r-edge-Eulerian-connectivity of a graph can be defined similarly. Let θ(r) be the minimum value of k such that every k-edge-connected graph is r-Eulerian-connected. Catlin proved that θ(0)=4. We shall show that θ(r)=4 for 0?r?2, and θ(r)=r+1 for r?3. Results on r-edge-Eulerian connectivity are also discussed.  相似文献   

20.
The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset S of V(G) is called a Pn-kernel of G if τ(G[S])≤n−1 and every vertex vV(G)−S is adjacent to an end-vertex of a path of order n−1 in G[S]. A partition of the vertex set of G into two sets, A and B, such that τ(G[A])≤a and τ(G[B])≤b is called an (a,b)-partition of G. In this paper we show that any graph with girth g has a Pn+1-kernel for every . Furthermore, if τ(G)=a+b, 1≤ab, and G has girth greater than , then G has an (a,b)-partition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号