共查询到20条相似文献,搜索用时 0 毫秒
1.
We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1,2,…,k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its two endvertices. We define to be the smallest integer k for which G has an edge-colouring total k-labelling. This parameter has natural upper and lower bounds in terms of the maximum degree Δ of . We improve the upper bound by 1 for every graph and prove . Moreover, we investigate some special classes of graphs. 相似文献
2.
3.
We investigate the following modification of the well-known irregularity strength of graphs. Given a total weighting w of a graph G=(V,E) with elements of a set {1,2,…,s}, denote wtG(v)=∑evw(e)+w(v) for each vV. The smallest s for which exists such a weighting with wtG(u)≠wtG(v) whenever u and v are distinct vertices of G is called the total vertex irregularity strength of this graph, and is denoted by . We prove that for each graph of order n and with minimum degree δ>0. 相似文献
4.
A total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs. 相似文献
5.
The main result of this paper establishes that the irregularity strength of any tree with no vertices of degree two is its number of pendant vertices. 相似文献
6.
The main result of this paper establishes that the irregularity strength of any tree with no vertices of degree two is its number of pendant vertices. 相似文献
7.
8.
Marcin Anholcer 《Discrete Mathematics》2009,309(22):6434-6439
Consider a simple graph G with no isolated edges and at most one isolated vertex. A labeling w:E(G)→{1,2,…,m} is called product-irregular, if all product degrees pdG(v)=∏e∋vw(e) are distinct. The goal is to obtain a product-irregular labeling that minimizes the maximum label. This minimum value is called the product irregularity strength. The analogous concept of irregularity strength, with sums in place of products, has been introduced by Chartrand et al. and investigated by many authors. 相似文献
9.
An edge coloring totalk-labeling is a labeling of the vertices and the edges of a graph G with labels{1,2,...,k}such that the weights of the edges defne a proper edge coloring of G.Here the weight of an edge is the sum of its label and the labels of its two end vertices.This concept was introduce by Brandt et al.They defnedχt(G)to be the smallest integer k for which G has an edge coloring total k-labeling and proposed a question:Is there a constant K withχt(G)≤Δ(G)+12+K for all graphs G of maximum degreeΔ(G)?In this paper,we give a positive answer for outerplanar graphs by showing thatχt(G)≤Δ(G)+12+1 for each outerplanar graph G with maximum degreeΔ(G). 相似文献
10.
Jakub Przybyło 《Discrete Mathematics》2018,341(4):1098-1102
Let be a (not necessarily proper) total colouring of a graph with maximum degree . Two vertices are sum distinguished if they differ with respect to sums of their incident colours, i.e. . The least integer admitting such colouring under which every at distance in
are sum distinguished is denoted by . Such graph invariants link the concept of the total vertex irregularity strength of graphs with so-called 1-2-Conjecture, whose concern is the case of . Within this paper we combine probabilistic approach with purely combinatorial one in order to prove that for every integer and each graph , thus improving the previously best result: . 相似文献
11.
A vertex irregular total k-labelling λ:V(G)∪E(G)?{1,2,…,k} of a graph G is a labelling of vertices and edges of G done in such a way that for any different vertices x and y, their weights wt(x) and wt(y) are distinct. The weight wt(x) of a vertex x is the sum of the label of x and the labels of all edges incident with x. The minimum k for which a graph G has a vertex irregular total k-labelling is called the total vertex irregularity strength of G, denoted by . In this paper, we determine the total vertex irregularity strength of trees. 相似文献
12.
Michael A. Henning 《Discrete Applied Mathematics》2010,158(2):147-153
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. The graph G is total domination edge critical if for every edge e in the complement of G, γt(G+e)<γt(G). We call such graphs γtEC. Properties of γtEC graphs are established. 相似文献
13.
Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles 总被引:1,自引:0,他引:1
Two cycles are said to be adjacent if they share a common edge. Let G be a planar graph without triangles adjacent 4-cycles. We prove that if Δ(G)≥6, and and if Δ(G)≥8, where and denote the list edge chromatic number and list total chromatic number of G, respectively. 相似文献
14.
Let be the class of edge intersection graphs of linear 3-uniform hypergraphs. It is known that the problem of recognition of the class is NP-complete. We prove that this problem is polynomially solvable in the class of graphs with minimum vertex degree ≥10. It is also proved that the class is characterized by a finite list of forbidden induced subgraphs in the class of graphs with minimum vertex degree ≥16. 相似文献
15.
A connected graph is total domination stable upon edge removal, if the removal of an arbitrary edge does not change the total domination number. We determine the minimum number of edges required for a total domination stable graph in terms of its order and total domination number. 相似文献
16.
17.
Tomáš Kaiser Andrew King Daniel Král? 《Journal of Combinatorial Theory, Series B》2011,101(6):383-402
Reed conjectured that for every ?>0 and Δ there exists g such that the fractional total chromatic number of a graph with maximum degree Δ and girth at least g is at most Δ+1+?. We prove the conjecture for Δ=3 and for even Δ?4 in the following stronger form: For each of these values of Δ, there exists g such that the fractional total chromatic number of any graph with maximum degree Δ and girth at least g is equal to Δ+1. 相似文献
18.
A graph G = (V, E) is called (k, k′)‐total weight choosable if the following holds: For any total list assignment L which assigns to each vertex x a set L(x) of k real numbers, and assigns to each edge e a set L(e) of k′ real numbers, there is a mapping f: V∪E→? such that f(y)∈L(y) for any y∈V∪Eand for any two adjacent vertices x, x′, . We conjecture that every graph is (2, 2)‐total weight choosable and every graph without isolated edges is (1, 3)‐total weight choosable. It follows from results in [7] that complete graphs, complete bipartite graphs, trees other than K2 are (1, 3)‐total weight choosable. Also a graph G obtained from an arbitrary graph H by subdividing each edge with at least three vertices is (1, 3)‐total weight choosable. This article proves that complete graphs, trees, generalized theta graphs are (2, 2)‐total weight choosable. We also prove that for any graph H, a graph G obtained from H by subdividing each edge with at least two vertices is (2, 2)‐total weight choosable as well as (1, 3)‐total weight choosable. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:198‐212, 2011 相似文献
19.
Let G=(V,E) be a finite (non-empty) graph, where V and E are the sets of vertices and edges of G. An edge magic total labeling is a bijection α from VE to the integers 1,2,…,n+e, with the property that for every xyE, α(x)+α(y)+α(xy)=k, for some constant k. Such a labeling is called an a-vertex consecutive edge magic total labeling if α(V)={a+1,…,a+n} and a b-edge consecutive edge magic total if α(E)={b+1,b+2,…,b+e}. In this paper we study the properties of a-vertex consecutive edge magic and b-edge consecutive edge magic graphs. 相似文献
20.
WOODALL Douglas R 《中国科学A辑(英文版)》2009,52(5):973-980
It is conjectured that χas(G) = χt(G) for every k-regular graph G with no C5 component (k 2). This conjecture is shown to be true for many classes of graphs, including: graphs of type 1; 2-regular, 3-regular and (|V (G)| - 2)-regular graphs; bipartite graphs; balanced complete multipartite graphs; k-cubes; and joins of two matchings or cycles. 相似文献