首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X=H/L be an irreducible real bounded symmetric domain realized as a real form in an Hermitian symmetric domain D=G/K. The intersection S of the Shilov boundary of D with X defines a distinguished subset of the topological boundary of X and is invariant under H. It can be realized as S=H/P for certain parabolic subgroup P of H. We study the spherical representations of H induced from P. We find formulas for the spherical functions in terms of the Macdonald hypergeometric function. This generalizes the earlier result of Faraut-Koranyi for Hermitian symmetric spaces D. We consider a class of H-invariant integral intertwining operators from the representations on L2(S) to the holomorphic representations of G restricted to H. We construct a new class of complementary series for the groups H=SO(n,m), SU(n,m) (with nm>2) and Sp(n,m) (with nm>1). We realize them as discrete components in the branching rule of the analytic continuation of the holomorphic discrete series of G=SU(n,m), SU(n,mSU(n,m) and SU(2n,2m) respectively.  相似文献   

2.
Let X,X1,X2,… be a sequence of nondegenerate i.i.d. random variables with zero means. Set Sn=X1+?+Xn and . In the present paper we examine the precise asymptotic behavior for the general deviation probabilities of self-normalized sums, Sn/Wn. For positive functions g(x), ?(x), α(x) and κ(x), we obtain the precise asymptotics for the following deviation probabilities of self-normalized sums:
  相似文献   

3.
A graph X, with a subgroup G of the automorphism group of X, is said to be (G,s)-transitive, for some s≥1, if G is transitive on s-arcs but not on (s+1)-arcs, and s-transitive if it is -transitive. Let X be a connected (G,s)-transitive graph, and Gv the stabilizer of a vertex vV(X) in G. If X has valency 5 and Gv is solvable, Weiss [R.M. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48] proved that s≤3, and in this paper we prove that Gv is isomorphic to the cyclic group Z5, the dihedral group D10 or the dihedral group D20 for s=1, the Frobenius group F20 or F20×Z2 for s=2, or F20×Z4 for s=3. Furthermore, it is shown that for a connected 1-transitive Cayley graph of valency 5 on a non-abelian simple group G, the automorphism group of is the semidirect product , where R(G) is the right regular representation of G and .  相似文献   

4.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

5.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

6.
In the paper we examine Pexiderized ?-homogeneity equation almost everywhere. Assume that G and H are groups with zero, (X,G) and (Y,H) are a G- and an H-space, respectively. We prove, under some assumption on (Y,H), that if functions and satisfy Pexiderized ?-homogeneity equation
F1(αx)=?(α)F2(x)  相似文献   

7.
Given a graph G, for an integer c∈{2,…,|V(G)|}, define λc(G)=min{|X|:XE(G),ω(GX)≥c}. For a graph G and for an integer c=1,2,…,|V(G)|−1, define,
  相似文献   

8.
Let X1,X2,…,Xn be independent exponential random variables such that Xi has failure rate λ for i=1,…,p and Xj has failure rate λ* for j=p+1,…,n, where p≥1 and q=n-p≥1. Denote by Di:n(p,q)=Xi:n-Xi-1:n the ith spacing of the order statistics , where X0:n≡0. It is shown that Di:n(p,q)?lrDi+1:n(p,q) for i=1,…,n-1, and that if λ?λ* then , and for i=1,…,n, where ?lr denotes the likelihood ratio order. The main results are used to establish the dispersive orderings between spacings.  相似文献   

9.
Let D be a bounded open subset in Rd, d?2, and let G denote the Green function for D with respect to (-Δ)α/2, 0<α?2, α<d. If α<2, assume that D satisfies the interior corkscrew condition; if α=2, i.e., if G is the classical Green function on D, assume—more restrictively—that D is a uniform domain. Let g=G(·,y0)∧1 for some y0D. Based on the uniform boundary Harnack principle, it is shown that G has the generalized triangle property which states that when d(z,x)?d(z,y). An intermediate step is the approximation G(x,y)≈|x-y|α-dg(x)g(y)/g(A)2, where A is an arbitrary point in a certain set B(x,y).This is discussed in a general setting where D is a dense open subset of a compact metric space satisfying the interior corkscrew condition and G is a quasi-symmetric positive numerical function on D×D which has locally polynomial decay and satisfies Harnack's inequality. Under these assumptions, the uniform boundary Harnack principle, the approximation for G, and the generalized triangle property turn out to be equivalent.  相似文献   

10.
K.L. Ng 《Discrete Mathematics》2009,309(6):1603-1610
For a connected graph G containing no bridges, let D(G) be the family of strong orientations of G; and for any DD(G), we denote by d(D) the diameter of D. The orientation number of G is defined by . Let G(p,q;m) denote the family of simple graphs obtained from the disjoint union of two complete graphs Kp and Kq by adding m edges linking them in an arbitrary manner. The study of the orientation numbers of graphs in G(p,q;m) was introduced by Koh and Ng [K.M. Koh, K.L. Ng, The orientation number of two complete graphs with linkages, Discrete Math. 295 (2005) 91-106]. Define and . In this paper we prove a conjecture on α proposed by K.M. Koh and K.L. Ng in the above mentioned paper, for qp+4.  相似文献   

11.
12.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

13.
We pose the problem of identifying the set K(G,Ω) of Galois number fields with given Galois group G and root discriminant less than the Serre constant Ω≈44.7632. We definitively treat the cases G=A4, A5, A6 and S4, S5, S6, finding exactly 59, 78, 5 and 527, 192, 13 fields, respectively. We present other fields with Galois group SL3(2), A7, S7, PGL2(7), SL2(8), ΣL2(8), PGL2(9), PΓL2(9), PSL2(11), and , and root discriminant less than Ω. We conjecture that for all but finitely many groups G, the set K(G,Ω) is empty.  相似文献   

14.
For a connected graph G of order p≥2, a set SV(G) is a geodetic set of G if each vertex vV(G) lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by g(G). A geodetic set of cardinality g(G) is called a g-set of G. A connected geodetic set of G is a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by gc(G). A connected geodetic set of cardinality gc(G) is called a gc-set of G. A connected geodetic set S in a connected graph G is called a minimal connected geodetic set if no proper subset of S is a connected geodetic set of G. The upper connected geodetic number is the maximum cardinality of a minimal connected geodetic set of G. We determine bounds for and determine the same for some special classes of graphs. For positive integers r,d and nd+1 with rd≤2r, there exists a connected graph G with , and . Also, for any positive integers 2≤a<bc, there exists a connected graph G such that g(G)=a, gc(G)=b and . A subset T of a gc-set S is called a forcing subset for S if S is the unique gc-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by fc(S), is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by fc(G), is fc(G)=min{fc(S)}, where the minimum is taken over all gc-sets S in G. It is shown that for every pair a,b of integers with 0≤ab−4, there exists a connected graph G such that fc(G)=a and gc(G)=b.  相似文献   

15.
We consider systems of combinatorial Dyson-Schwinger equations (briefly, SDSE) , … , in the Connes-Kreimer Hopf algebra HI of rooted trees decorated by I={1,…,N}, where is the operator of grafting on a root decorated by i, and F1,…,FN are non-constant formal series. The unique solution X=(X1,…,XN) of this equation generates a graded subalgebra H(S) of HI. We characterise here all the families of formal series (F1,…,FN) such that H(S) is a Hopf subalgebra. More precisely, we define three operations on SDSE (change of variables, dilatation and extension) and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (S) such that H(S) is Hopf is the concatenation of several fundamental or cyclic systems after the application of a change of variables, a dilatation and iterated extensions.  相似文献   

16.
Let X be a locally compact Polish space and G a non-discrete Polish ANR group. By C(X,G), we denote the topological group of all continuous maps endowed with the Whitney (graph) topology and by Cc(X,G) the subgroup consisting of all maps with compact support. It is known that if X is compact and non-discrete then the space C(X,G) is an l2-manifold. In this article we show that if X is non-compact and not end-discrete then Cc(X,G) is an (R×l2)-manifold, and moreover the pair (C(X,G),Cc(X,G)) is locally homeomorphic to the pair of the box and the small box powers of l2.  相似文献   

17.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

18.
Let X be a Green domain in Rd, d?2, xX, and let Mx(P(X)) denote the compact convex set of all representing measures for x. Recently it has been proven that the set of harmonic measures , U open in X, xU, which is contained in the set of extreme points of Mx(P(X)), is dense in Mx(P(X)). In this paper, it is shown that Mx(P(X)) is not a simplex (and hence not a Poulsen simplex). This is achieved by constructing open neighborhoods U0, U1, U2, U3 of x such that the harmonic measures are pairwise different and . In fact, these measures form a square with respect to a natural L2-structure. Since the construction is mainly based on having certain symmetries, it can be carried out just as well for Riesz potentials, the Heisenberg group (or any stratified Lie algebra), and the heat equation (or more general parabolic situations).  相似文献   

19.
Let G be a simple graph of order n. Let and , where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. We say that Ac=[cij] is the conjugate adjacency matrix of the graph G if cij=c for any two adjacent vertices i and j, for any two nonadjacent vertices i and j, and cij=0 if i=j. Let PG(λ)=|λI-A| and denote the characteristic polynomial and the conjugate characteristic polynomial of G, respectively. In this work we show that if then , where denotes the complement of G. In particular, we prove that if and only if PG(λ)=PH(λ) and . Further, let Pc(G) be the collection of conjugate characteristic polynomials of vertex-deleted subgraphs Gi=G?i(i=1,2,…,n). If Pc(G)=Pc(H) we prove that , provided that the order of G is greater than 2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号