首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO‐Al2O3 nanocomposite (ZANC) is used as nanocatalyst for photodegradation of acid violet 5B (AV5B) as an industrial dye. The experimental data shows that the degradation of AV5B is accelerated by ZANC and UV light. The effects of various parameters such as pH, hydrogen peroxide and ethanol are investigated on the photodegradation efficiency. Photocatalytic degradation rate of AV5B is increased by ethanol and hydrogen peroxide. Based on the kinetic studies, the rate constant of the photodegradation reaction is estimated 2.829 × 10‐1 min‐1.  相似文献   

2.
Zinc oxide-based ternary heterostructure ZnO/CuO/Eu(1%, 3%, and 5% of Eu) nanoparticles were effectively produced by employing Vigna unguiculata (cowpea)waste skin extract as fuel in a simple one-pot combustion process. The as-synthesized heterostructure was analyzed by X-ray diffraction studies, ultraviolet-visible spectroscopy, Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscopy, and High-Resolution Transmission Electron Microscopy techniques. Besides, the photocatalytic degradation efficiency of the as-obtained ternary nanocomposite was evaluated under UV light for the degradation of model organic pollutants including methylene blue (MB), Rhodamine-B (RB), and an effluent sample collected from the textile industrial waste. During this study, the effect of a variety of parameters on the photodegradation activity of the photocatalysts has been thoroughly evaluated, such as light source, catalyst dose, irradiation period, dye concentration, solution pH, etc. Under UV irradiation(100 mins), the ternary ZnO/CuO/Eu photocatalyst demonstrated excellent degradation activity of ~99 and ~93% for MB and RB, respectively, while for the industrial effluent, a decent degradation activity of 42% has been recorded. Further experiments have revealed a pH and concentration-dependent photocatalytic behavior of the heterostructure photocatalyst. Therefore, the results suggest that the heterostructure photocatalyst can be potentially applied for wastewater treatment and other environmental applications.  相似文献   

3.
本文对UV/H2O2光助氧化降解丽华实军蓝制衣染料的效果及其影响因素和动力学进行了研究。结果表明,UV/H2O2对丽华实军蓝染料废液具有很好的处理效果,用量少,处理浓度高,且在发生光助氧化降解的同时还伴随着光分解反应。UV/H2O2体系的光助氧化反应和UV体系的光分解反应均为表观一级反应,前者活化能9.71 kJ.mol-1,指前因子1.61 min-1,后者活化能50.3 kJ.mol-1,指前因子3.88×105min-1。染料溶液初始pH为强碱性(pH=12)时染料降解率最大。  相似文献   

4.
Photocatalytic decolorization of BGY, an anionic dye, has been investigated in TiO2 and ZnO aqueous dispersions under UV-light irradiation. Spectrum of the dye has been found unaffected in the pH range 4.21–11.30. Adsorption is a prerequisite for the metal oxide-mediated photodegradation/photodecolorization and the extent of decolorization has been discussed in terms of the Langmuir–Hinshelwood model. Complete decolorization was achieved in case of UV irradiation whereas degradation of BGY was found to be about ca.75%. ZnO-mediated decolorization has appeared to be better and faster. The effects of various parameters, such as catalyst loading, pH and initial concentration of the dye on decolorization have been investigated.  相似文献   

5.
In this paper the photocatalytic degradation of anionic surfactant LABS was studied by a batch process using ZnO nanoparticles with diameter size of 20 nm catalyst on irradiation with UV light and their behavior comparatively examined with respect to ZnO commercial powder. The effect of parameters such as initial surfactant concentration, initial solution pH has been studied. Also degradation at LABS in the presence of an electron acceptor like potassium peroxydisulfate and effect of anion presence on surfactant degradation has been systematically investigated. The obtained result demonstrated a high photocatalytic activity of nanosize semiconducting particles.  相似文献   

6.
Heterogeneous photocatalytic treatment of a dye called methyl green (MG), which was simulating textile wastewater from associated auxiliary chemicals, was investigated using ZnO. A detailed investigation of the photodegradation of MG has been carried out in the ZnO suspension irradiated with visible light. The effects of various factors - viz. pH values, amount of catalyst, initial dye concentration, and the presence of NaCl, Na(2)CO(3), H(2)O(2), and Na(2)S(2)O(8) - on the degradation efficiency were studied. Thirty-two intermediates were separated, identified, and characterized by high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (HPLC-ESI-DAD-MS) technology, giving us insight into the pathways of the degradation process.  相似文献   

7.
通过原位聚合-热转化两步法,利用ZnO纳米微粒和糠醇(F)制备出了具有大共轭结构的高分子(CPF)和ZnO的纳米复合催化材料(CPF/ZnO);用TG-DTA、TEM、XRD、XPS、IR和UV-Vis等技术对其热稳定性、形貌、尺寸、结构及吸光特性等进行了表征,以亚甲基蓝(MB)溶液的催化降解研究了该材料在自然光条件下的催化性能。结果表明,由该方法可以得到平均尺寸约为 50 nm的CPF/ZnO纳米复合催化材料;其中的CPF为具有极性基团和大共轭结构的高分子;ZnO与CPF化学键合在一起;CPF的引入将ZnO的光谱响应拓展到了整个紫外-可见区,从而极大地改善了ZnO在自然光条件下的催化性能。如在460 ℃下处理40 min所得的纳米复合材料,在自然光条件下,10 min即可使MB溶液完全脱色,而在相同条件下,纯纳米ZnO仅能使MB的脱色率为10%左右;该催化材料重复使用3次仍可使MB溶液的脱色率保持在80%以上。  相似文献   

8.
In this research, the efficiency of ZnO and TiO2 was compared by photocatalytic degradation of Congo red azo dye. The effects of some parameters such as pH, dye concentration and irradiation time on the degradation rate of dye solution were also examined. In addition, the aggregation feature of Congo red was studied by using UV-Vis spectroscopy techniques. The recovery of the ZnO catalyst was also investigated.  相似文献   

9.
UV/H_2O_2体系中SF Blue染料的降解动力学   总被引:1,自引:0,他引:1  
对UV/H2O2处理SFBlue制衣染料溶液的效果及其影响因素和动力学进行了研究。结果表明,UV/H2O2对SFBlue染料废液具有很好的处理效果,且在发生光助氧化降解的同时还伴随着光分解反应。UV/H2O2体系的光助氧化反应和UV体系的光分解反应均为表观一级反应,前者活化能5.17kJ/mol,指前因子0.168min-1,后者活化能16.9kJ/mol,指前因子1.04min-1。染料溶液初始pH为强碱性(pH=12)时染料降解率最大。  相似文献   

10.
The thin film of N-doped ZnO/CNT nanocomposite was successfully fabricated on soda lime glass substrate by a simple sol-gel drop-coating method. The structural, morphological, chemical, and optical properties of as prepared samples were characterized by a variety of tools such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The hexagonal crystalline structure was confirmed from XRD measurement without any other impurity phase detection in samples. The N-doped ZnO/CNT composite showed excellent photo-catalytic activity towards cationic methylene blue (MB) dye degradation with 100% removal rate under UV light irradiation as compared to N-doped ZnO (65%) and pure ZnO (47.36%). The convincing performance has also been observed for the case of visible light irradiation. The enhancement of that photocatalytic activity might be due to narrowing the band gap as well as the reduction of electron–hole pair recombination in ZnO matrix with the incorporation of dopant nitrogen and CNT. It is assumed from the obtained results that N-doped ZnO/CNT nanocomposite thin film can be employed as an economically achievable and ecofriendly method to degrade dye with UV and visible light irradiation. Additionally, density functional theory (DFT) calculations were applied to explore the effect of N-doping on electronic structure of ZnO. The computational study has supported the experimental results of significant band gap contraction, which leads to the maximum absorption towards higher wavelength and no appreciable change of lattice parameters after doping. A conceivable photocatalytic mechanism of N-doped ZnO/CNT nanocomposite has been proposed as well.  相似文献   

11.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

12.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

13.
Nanocrstalline pure anatase titania were prepared by sol–gel process at room temperature followed by ultrasonication (Ti–US). The photocatalytic activity of Ti–US has been evaluated by the degradation of textile dye, Methylene Blue in presence and absence of common inorganic salts (NO3, C2O42−, SO42−, citrate). It was observed that, in presence of anions, the degradation of the dye increases significantly. The influence of the presence of H2O2 on the degradation rate was studied. The dependence of photodegradation of the dye rates on various parameters such as dye concentration, photocatalyst concentration and pH were also investigated. The photodegradation rate follows first order kinetics. H2O2 and UV light have a negligible effect in absence of Ti–US catalyst. The relative photonic efficiency of the system is reported using phenol as a standard organic compound.  相似文献   

14.
Photocatalytic degradation of Acid violet 19 (AV 19) under UV radiation followed first-order kinetics and obeyed Langmuir-Hinshelwood mechanism. The oxidants involved were identified as positive hole, hydroxyl radical and superoxide anion radical. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Fe(III) complex of 2-phenylbenzimidazole has been covalently anchored on polymer and characterized by elemental analysis, FT-IR, far-IR, BET surface area measurements, UV–Vis/DRS spectroscopy, thermo-gravimetric analysis and magnetic moment measurements by VSM which confirmed an octahedral environment around Fe(III) in the bound complex. The photocatalytic performance of this complex was evaluated in the photodegradation of dyes in presence of H2O2 as an oxidizing agent. Suitable reaction conditions have been optimized by considering the effects of various reaction parameters such as pH, oxidants, concentration of dye, H2O2 and catalyst for the maximum degradation of dye. The photodegradation was found to be 100% with complete mineralization in 150?min. The comparison of photocatalytic efficiency of the catalyst under visible light, sunlight and dark conditions are accomplished. Comparison between catalytic activity of the polymer-supported complex and unbound complex demonstrated that the polymer-supported complex was more active. Photocatalytic performance of PS-Fe(III)PBMZL was also compared with commercial TiO2 (P25). This heterogeneous complex retained its activity up to 8 runs. A tentative mechanism has been proposed.  相似文献   

16.
Photocatalytic oxidation of glycerol at ambient conditions has been investigated with the use of Zinc oxide photocatalysts. Zinc oxide nanorods were prepared via a simple hydrothermal method using zinc nitrate and sodium hydroxide in the solution pH of 7, 8 and 9. The samples prepared in this way were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) and ultraviolet–visible spectroscopy (UV–vis). The pH of the solution is 7, the sample contains zinc hydroxide nitrate hydrated. When the pH of solution was adjusted to 8 and 9, the samples consisted of pure hexagonal wurtzite ZnO without impurity detection. The influence of solution pH on hydrogen formation was investigated. The wurtzite ZnO nanorods synthesized in a solution with pH 9 are considered promising photocatalysts for hydrogen production under xenon radiation.  相似文献   

17.
Aqueous solutions of Safranin-T, a hazardous textile dye, are photodegraded under ultraviolet light using TiO2 as catalyst. The process has been carried out at different pHs, amounts of catalyst, concentrations of the dye, and effects of the electron acceptor H2O2. It is found that under the influence of TiO2 as catalyst the colored solution of the dye Safranin-T becomes colorless and the process follows first-order reaction kinetics. The optimum conditions for the degradation of the dye have been found as 5.0x10(-5) M dye concentration, pH 5.7, and 12 mg catalyst dose. In order to evaluate the effect of the electron acceptor, the effect of H2O2 on the degradation process is also monitored and it is found that generation of hydroxyl radicals and retardation of electron-hole recombination takes place. Measuring chemical oxygen demand also monitors the toxicity of the degraded dye solution and a significant decrease is observed, which implies that the photodegradation through TiO2 is a safer technique.  相似文献   

18.
In search for safe techniques to manage waste pharmaceutical compounds drained in water, solar-driven degradation of phenazopyridine (a model drug) was investigated in aqueous media using different ZnO-based catalyst systems. Naked ZnO, CdS-sensitized ZnO (ZnO/CdS) and activated carbon-supported ZnO (AC/ZnO) have been studied. Both naked ZnO and AC/ZnO were highly efficient in mineralizing phenazopyridine, reaching complete removal in ~50 min, with AC/ZnO having the higher edge. The ZnO/CdS system showed lower efficiency, due to screening of light by CdS. Moreover, the tendency of CdS to leach out Cd2+ ions discouraged the use of CdS as sensitizer in this work. In both ZnO and AC/ZnO systems, the photo-degradation reaction was induced by the UV tail of the solar light. The visible region, with wavelength longer than 400 nm, failed to induce photo-degradation. The reaction was faster with higher catalyst loading, until a maximum efficiency was reached at a certain concentration. The rate of reaction increased with higher drug concentrations up to a certain limit. The effect of pH value was studied, and the catalysts showed highest efficiencies at pH close to 7. Stability of ZnO to degradation was studied. Both catalyst systems showed lowered efficiencies on recovery and reuse. The results suggest that complete mineralization of waste drugs, commonly dumped in sewage water, with direct solar light is a potentially feasible strategy using the AC/ZnO catalyst.  相似文献   

19.
20.
A crude preparation of horseradish roots was used as a low-purity source of horseradish peroxidase (HRP) in dye decolorization experiments. The technical feasibility of the process was studied in bench scale for enzymatic removal of acid orange 7 (AO7), a synthetic dye. Further studies were carried out to understand the effects of process parameters such as pH value, H(2)O(2) level, concentrations of the synthetic dye, and HRP during enzyme-mediated dye degradation. Experimental data revealed that the concentration of AO7, pH of the aqueous phase, amount of the enzyme, and H(2)O(2) level played significant roles on the overall enzymatic reaction. Polyethylene glycol, as an anti-inactivation of HRP, in various concentrations showed no significant effect on the decolorization. The experimental data of initial reaction rates were fitted using an analytical equation proposed by Michaelis-Menten. The acute toxicity tests using Daphnia magna exhibited that the enzymatic treatment significantly decreased the toxicity of the dye solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号