首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of a star triblock copolymer based on polystyrene, poly(ethylene oxide), and poly(methacrylic acid) blocks (S-St-EO-MAA) is described. The polymer structure was achieved by the following route: the polystyrene macroanion (PSm) was formed first by a butyllithium-initiated polymerization of styrene and capping with Michler's ketone; the resulting N,N,N′,N′-tetramethyl-4,4′-diaminodiphenylmethanol (TDDM)-terminated polystyrene was further reacted with metal potassium. The oxo-anion initiated the ring-opening polymerization of ethylene oxide, and the desired ABC triblock copolymer was obtained by precipitation polymerization of methacrylic acid (MAA) initiated with a charge transfer complex (CTC) under UV irradiation using benzene as a solvent. The complex is composed of PS-b-PEO with a TDDM end group (PS-b-PEOtm) and benzophenone (BP).  相似文献   

2.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   

3.
刚柔嵌段聚合物作为多层次有序高级结构的构筑单元正受到广泛的关注.与仅由柔性链段连接而成的嵌段聚合物相比,一方面,刚性链段和柔性链段的相分离与刚性链段倾向于有序取向间的竞争,使其自组装能力增强;另一方面,可在刚性链段引入某些功能基团,从而赋予超分子聚集体识别、传感、催化、光电等特殊的性质.  相似文献   

4.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


5.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

6.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

7.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

8.
Heteroarm H‐shaped terpolymers, [(poly(L ‐lactide))(polystyrene)]poly(ethylene oxide)[(polystyrene)(poly(L ‐lactide))], [(PLLA)(PS)]PEO[(PS)(PLLA)], in which PEO acts as a main chain and PS and PLLA as side arms, have been successfully prepared via combination of reversible addition–fragmentation transfer (RAFT) polymerization and ring‐opening polymerization (ROP). The first step is the synthesis of the PEO capped with one terminal dithiobenzoate group and one hydroxyl group at every chain end, [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] from the reaction of carboxylic acid with ethylene oxide. Then, the RAFT polymerization of styrene (St) was carried out using [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] as RAFT agent and AIBN as initiator, and the triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], was formed. Finally, the heteroarm H‐shaped terpolymers, [(PLLA)(PS)]PEO[(PS)(PLLA)], were produced by ROP of LLA, using triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], as macroinitiator and Sn(Oct)2 as catalyst. The target products and intermediates were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 789–799, 2007  相似文献   

9.
In the preparation of the ABC star triblock copolymer of ethylene oxide, styrene and methyl methacrylate (MMA), the photo-induced charge-transfer complex (CTC) was used to initiate the polymerization of the third monomer MMA. The CTC was composed of the diblock copolymer of poly(ethylene oxide) (PEO) and polystyrene (PS), PEO-b i -PS, with an aromatic imino group at the conjunction point and benzophenone (BP). It was confirmed that the kinetic behavior of this macromolecular initiation system is nearly the same with a general small radical initiator: the polymerization rate R p ∝ [PEO-b i -PS]0.48[BP]0.45[MMA]0.97. Moreover, if the molecular weight of the PEO block is fixed, R p is independent of the molecular weight of the PS block.  By means of measurements of viscosity and fluorescence, it was found that the micelles of the diblock copolymer PEO-b i -PS were formed in benzene. The aromatic imino groups were located on the boundary surfaces of the micelles and were fully exposed, and so the BP and MMA molecules easily approached them and affected the charge-transfer polymerization of MMA. Received: 18 August 1998 Accepted in revised form: 25 November 1998  相似文献   

10.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

11.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


12.
Photocontrolled microphase separation of block copolymers in two dimensions   总被引:2,自引:0,他引:2  
A novel ABA-type triblock copolymer, where A and B correspond to azobenzene (Az) containing polymethacrylate and poly(ethylene oxide) (PEO), respectively, was synthesized by atom transfer radical polymerization. Langmuir-Blodgett monolayers showed characteristic microphase separation structures depending on the isomerization state of the Az unit. The trans-to-cis isomerization induced an anisotropic elongation of the domain of the Az polymer parallel to the rod maintaining the width. Thus, successful photocontrol of nanostructures formed by the block copolymer in the two dimensions was performed. A plausible model for the Az packing and PEO conformation is proposed.  相似文献   

13.
Polystyrene–poly(ethylene oxide) PS–PEO di- and triblock copolymers have been used as stabilizers in the emulsion polymerization of styrene and styrene–butylacrylate for the preparation of “hairy latexes”. The polymerization kinetics and the efficiency of these polymeric surfactants were correlated with the molecular characteristics of the block copolymer. It was shown that the efficiency decreased with increasing molecular weight and PS content of the block copolymer. The PEO frige, with a thickness of 4–25 nm, on the latex particle surface could be characterized and it was shown by differential scanning calorimetry (DSC) that water is strucured in that PEO layer. Film formation with “hairy latexes” was also examined both by DSC and thermomechanical analysis. The properties and application possibilities, such as in controlled latex flocculation, have been reviewed.  相似文献   

14.
A block copolymer of methyl methacrylate with poly(ethylene oxide) was synthesized by initiation with poly(ethylene oxide) radicals formed by high-speed stirring. The effects of the concentration of the monomer, the concentration of the polymer, the degree of polymerization, the rotation speed, and the solvent on the rate of copolymerization were studied. It was found that the rate of copolymerization was proportional to the concentration of the monomer and to the square root of the rate of scission of the polymer chain. The block copolymerization of methyl methacrylate monomer and styrene monomer (1 : 1 mole ratio) with poly(ethylene oxide) radicals was also carried out by the same method and it was found that the block copolymerization was a radical one.  相似文献   

15.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


16.
A bifunctional initiator with the characteristics of anionic and charge transfer polymerization using p-aminophenol as parent compound is useful for synthesis of block copolymers. A block copolymer of ethylene oxide and acrylonitrile (PEO-b-PAN) is prepared by this method. In the first step, p-aminophenol potassium with protected amine group initiated polymerization of ethylene oxide (EO) to yield polyethylene oxide (PEO) with Schiffs base end groups. The charge transfer complexes (CTC) consisted of the PEO prepolymers with aniline group, which is formed by acidolysis of Schiffs base, and benzophenone (BP) initiated the polymerization of acrylonitrile under UV irradiation. Successful blocking has been confirmed by a strong change in the molecular weight of the prepolymer PEO and the block copolymer as well as IR, DSC, and NMR. The block copolymerization are strongly dependent on the polarity of the solvents. The effect of length of PAN block on glass transition temperature of PAN and the crystallinity of PEO block were discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

18.
Hydroxy‐telechelic poly(methyl methacrylate)s of molecular weights below 5000 were obtained by atom transfer radical polymerization (ATRP) of methyl methacrylate followed by end‐capping with allyl alcohol via atom transfer radical addition (ATRA). As initiators for the ATRP, monofunctional initiators with an additional hydroxy group in the molecule or bifunctional initiators were employed. The successful synthesis of the hydroxy‐telechelic PMMA was proved by determination of their molecular weight using MALDI‐TOF‐MS. The efficiency of the end‐capping reaction was determined by 1H NMR spectroscopy using the allyl N‐(4‐tolyl)carbamate as end‐capping agent. Block copolymers comprising a poly(ethylene oxide) (PEO) block and a poly(methyl methacrylate) (PMMA) block were prepared by ATRP using a macroinitiator on the PEO basis. The dormant species of the macroinitiator consists of the phenyl chloroacetate moiety which shows a high rate of initiation. The successful synthesis of the poly(ethylene oxide)‐block‐poly(methyl methacrylate) was proved by 1H NMR spectroscopy; the ratios of EO/MMA repeating units in the feed and the copolymer were nearly equal.  相似文献   

19.
Multisegmented poly(methacrylate)s were synthesized using one pot reversible addition fragmentation chain transfer polymerization. Initially, a series of triblock copolymers were synthesized with different ratios of trimethylsilyl methacrylate, di(ethylene oxide) methacrylate, and oligo(ethylene oxide) methacrylate, and different total polymer molecular weights. Additionally, a polymer containing seven distinct blocks of methacrylic monomers was synthesized in one pot. For the triblock copolymers, the trimethylsilyl group was subsequently hydrolyzed, and the self‐assembly of the triblock copolymer was studied in water, under different pH and thermal conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2548–2555  相似文献   

20.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号