首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The just-noticeable-difference in frequency (jndf) for complex signals with triangular spectral envelopes is found to depend on the envelope slope. For shallow slopes (less than 140 dB/oct), jndf increases with decreasing slope. Addition of noise also impairs frequency discrimination within a region of about 20 dB above masked threshold. This is found for both maskers used: a wideband noise and a narrow-band masker which is below the signal in frequency. When wideband noise is used, frequency discrimination of complex signals with shallow slopes deteriorates more rapidly with decreasing signal-to-noise ratio than it does when the signals have steep spectral slopes.  相似文献   

2.
Background noise reduces the depth of the low-frequency envelope modulations known to be important for speech intelligibility. The relative strength of the target and masker envelope modulations can be quantified using a modulation signal-to-noise ratio, (S/N)(mod), measure. Such a measure can be used in noise-suppression algorithms to extract target-relevant modulations from the corrupted (target + masker) envelopes for potential improvement in speech intelligibility. In the present study, envelopes are decomposed in the modulation spectral domain into a number of channels spanning the range of 0-30 Hz. Target-dominant modulations are identified and retained in each channel based on the (S/N)(mod) selection criterion, while modulations which potentially interfere with perception of the target (i.e., those dominated by the masker) are discarded. The impact of modulation-selective processing on the speech-reception threshold for sentences in noise is assessed with normal-hearing listeners. Results indicate that the intelligibility of noise-masked speech can be improved by as much as 13 dB when preserving target-dominant modulations, present up to a modulation frequency of 18 Hz, while discarding masker-dominant modulations from the mixture envelopes.  相似文献   

3.
Vowels are characterized by peaks in their spectral envelopes: the formants. To gain insight into the perception of speech as well as into the basic abilities of the ear, sensitivity to modulations in the positions of these formants is investigated. Frequency modulation detection thresholds (FMTs) were measured for the center frequency of formantlike harmonic complexes in the absence and in the presence of simultaneous off-frequency formants (maskers). Both the signals and the maskers were harmonic complexes which were band-pass filtered with a triangular spectral envelope, on a log-log scale, into either a LOW (near 500 Hz), a MID (near 1500 Hz), or a HIGH region (near 3000 Hz). They had a duration of 250 ms, and either an 80- or a 240-Hz fundamental. The modulation rate was 5 Hz for the signals and 10 Hz for the maskers. A pink noise background was presented continuously. In a first experiment no maskers were used. The measured FMTs were roughly two times larger than previously reported just-noticeable differences for formant frequency. In a second experiment, no significant differences were found between the FMTs in the absence of maskers and those in the presence of stationary (i.e., nonfrequency modulated) maskers. However, under many conditions the FMTs were increased by the presence of simultaneous modulated maskers. These results indicate that frequency modulation detection interference (FMDI) can exist for formantlike complex tones. The FMDI data could be divided into two groups. For stimuli characterized by a steep (200-dB/oct) slope, it was found that the size of the FMDI depended on which cues were used for detecting the signal and masker modulations. For stimuli with shallow (50-dB/oct) slopes, the FMDI was reduced when the signal and the masker had widely differing fundamentals, implying that the fundamental information is extracted before the interference occurs.  相似文献   

4.
Vowels are mainly classified by the positions of peaks in their frequency spectra, the formants. For normal-hearing subjects, change detection and direction discrimination were measured for linear glides in the center frequency (CF) of formantlike sounds. A CF rove was used to prevent subjects from using either the start or end points of the glides as cues. In addition, change detection and starting-phase (start-direction) discrimination were measured for similar stimuli with a sinusoidal 5-Hz formant-frequency modulation. The stimuli consisted of single formants generated using a number of different stimulus parameters including fundamental frequency, spectral slope, frequency region, and position of the formant relative to the harmonic spectrum. The change detection thresholds were in good agreement with the predictions of a model which analyzed and combined the effects of place-of-excitation and temporal cues. For most stimuli, thresholds were approximately equal for change detection and start-direction discrimination. Exceptions were found for stimuli that consisted of only one or two harmonics. In a separate experiment, it was shown that change detection and start-direction discrimination of linear and sinusoidal formant-frequency modulations were impaired by off-frequency frequency-modulated interferers. This frequency modulation detection interference was larger for formants with shallow than for those with steep spectral slopes.  相似文献   

5.
Frequency discrimination of spectral envelopes of complex stimuli, frequency selectivity measured with psychophysical tuning curves, and speech perception were determined in hearing-impaired subjects each having a relatively flat, sensory-neural loss. Both the frequency discrimination and speech perception measures were obtained in quiet and noise. Most of these subjects showed abnormal susceptibility to ambient noise with regard to speech perception. Frequency discrimination in quiet and frequency selectivity did not correlate significantly. At low signal-to-noise ratios, frequency discrimination correlated significantly with frequency selectivity. Speech perception in noise correlated significantly with frequency selectivity and with frequency discrimination at low signal-to-noise ratios. The frequency discrimination data are discussed in terms of an excitation-pattern model. However, they neither support nor refute the model.  相似文献   

6.
Although in a number of experiments noise-band vocoders have been shown to provide acoustic models for speech perception in cochlear implants (CI), the present study assesses in four experiments whether and under what limitations noise-band vocoders can be used as an acoustic model for pitch perception in CI. The first two experiments examine the effect of spectral smearing on simulated electrode discrimination and fundamental frequency (FO) discrimination. The third experiment assesses the effect of spectral mismatch in an FO-discrimination task with two different vocoders. The fourth experiment investigates the effect of amplitude compression on modulation rate discrimination. For each experiment, the results obtained from normal-hearing subjects presented with vocoded stimuli are compared to results obtained directly from CI recipients. The results show that place pitch sensitivity drops with increased spectral smearing and that place pitch cues for multi-channel stimuli can adequately be mimicked when the discriminability of adjacent channels is adjusted by varying the spectral slopes to match that of CI subjects. The results also indicate that temporal pitch sensitivity is limited for noise-band carriers with low center frequencies and that the absence of a compression function in the vocoder might alter the saliency of the temporal pitch cues.  相似文献   

7.
Thresholds were measured for detecting steps in frequency linked by glides of various durations. The goals were to assess the relative importance of place and temporal information for this task, and to determine whether there is a mechanism for detecting dynamic frequency changes per se, as opposed to comparing the initial and final frequencies of the stimuli. Subjects discriminated a 500-ms sinusoid of constant frequency from a sinusoid with three parts: an initial part with constant frequency, a downward frequency glide, and a final part with constant frequency. The overall duration was 500 ms, and the glide duration was varied from 5 to 500 ms. In one special case, the portion of the stimuli when a glide might occur was replaced by a brief silent interval. The center frequency was fixed at 0.5, 1, 2, 4, or 6 kHz (condition 1), or varied randomly from one stimulus to the next over a 4-ERB range around the nominal center frequency (condition 2). The randomization impaired performance, but thresholds remained lower than the best that could be achieved by monitoring either the initial or final frequency of the stimuli. Condition 3 was like condition 2, but for each stimulus a glide in level was added at the time when a frequency glide might occur, so the initial and final levels differed; the glides in level varied randomly in extent and direction from one stimulus to the next over the range +/- 20 dB. This impaired performance, but thresholds remained lower than the best that could be achieved by monitoring changes in excitation level on only one side of the excitation pattern. Excitation-pattern models of frequency discrimination predict that thresholds should not vary across center frequency when expressed as the change in ERB number, delta E. For all conditions, delta E values increased at 6 kHz, suggesting a role for temporal information at lower frequencies. The increase was smallest for the longest glide duration, consistent with a greater relative role of place information when there was no steady state portion. Performance was better when a brief glide was present than when no glide was present, but worsened with increasing glide duration. The results were fitted well by a model based on the assumption that information from the steady parts of the stimuli (perhaps extracted mainly using temporal information) was combined with information from the glides (perhaps extracted mainly using place information).  相似文献   

8.
Amplitude modulation is an important parameter defining vertebrate acoustic communication signals. Nesting male plainfin midshipman fish, Porichthys notatus, emit simple, long duration hums in which modulation is strikingly absent. Envelope modulation is, however, introduced when the hums of adjacent males overlap to produce acoustic beats. Hums attract gravid females and can be mimicked with continuous tones at the fundamental frequency. While individual hums have flat envelopes, other midshipman signals are amplitude modulated. This study used one-choice playback tests with gravid females to examine the role of envelope modulation in hum recognition. Various pulse train and two-tone beat stimuli resembling natural communication signals were presented individually, and the responses compared to those for continuous pure tones. The effectiveness of pulse trains was graded and depended upon both pulse duration and the ratio of pulse to gap length. Midshipman were sensitive to beat modulations from 0.5 to 10 Hz, with fewer fish approaching the beat than the pure tone. Reducing the degree of modulation increased the effectiveness of beat stimuli. Hence, the lack of modulation in the midshipman's advertisement call corresponds to the importance of envelope modulation for the categorization of communication signals even in this relatively simple system.  相似文献   

9.
The present study investigated the hypothesis that the cues for modulation rate discrimination for unresolved spectral components differ as a function of the spectral region occupied by the stimuli. Specifically, it was hypothesized that when components occupy relatively low spectral regions, phase locking both to the fine structure and to the envelope are useful cues. However, as the spectral region occupied by the components increases, phase locking to the fine structure becomes less robust, whereas phase locking to the envelope remains as a potentially strong cue. Observers were asked to detect a decrease in modulation rate for carrier frequencies between 1500 and 6000 Hz. Both amplitude-modulated (AM) and quasifrequency-modulated (QFM) tones were used in order to produce stimuli having strong and weak envelope cues, respectively. Although there were marked individual differences, the results showed an interaction between modulation type and spectral region, with AM and QFM performance being relatively similar at low spectral region, but with QFM showing a steeper reduction in performance as the spectral region of the carrier frequency increased. Overall, the data are consistent with an interpretation that pitch perception for unresolved components depends upon both fine structure and envelope cues, and that the relative importance of these cues depends upon the spectral region occupied by the stimuli.  相似文献   

10.
We propose and demonstrate the use of hybrid ternary modulated digital pages for content-addressable holographic data storage. Display of binary data pages with equal number of ZEROs and ONEs by modulating both amplitude and phase of beams using twisted-nematic liquid crystal spatial light modulator, reduces strong de component and produces a more homogeneous spectral distribution at the recording plane. This technique facilitates better recording of all spatial frequencies, thus improving the discrimination capability of a content-addressable memory. Hence we get better results in associative recall in a holographic memory system, with very low number of false hits. An important advantage of the hybrid ternary modulation over pure phase data pages is that it offers a dark state for coding the undesired portion of the SLM while the search argument is small. The unique orientation of quarter wave plate and the analyzer blocks the light transmitted from OFF pixels leading to near total removal of dark signals. This in turn improves the system performance and reduces the number of false hits when the size of the search argument is small. Our experimental results show good discrimination capability and signal-to-noise ratio for a hybrid ternary modulation based content addressable memory.  相似文献   

11.
This study examined whether "modulation masking" could be produced by temporal similarity of the probe and masker envelopes, even when the masker envelope did not contain a spectral component close to the probe frequency. Both masker and probe amplitude modulation were applied to a single 4-kHz sinusoidal or narrow-band noise carrier with a level of 70 dB SPL. The threshold for detecting 5-Hz probe modulation was affected by the presence of a pair of masker modulators beating at a 5-Hz rate (40 and 45 Hz, 50 and 55 Hz, or 60 and 65 Hz). The threshold was dependent on the phase of the probe modulation relative to the beat cycle of the masker modulators; the threshold elevation was greatest (12-15 dB for the sinusoidal carrier and 9-11 dB for the noise carrier, expressed as 20 log m) when the peak amplitude of the probe modulation coincided with a peak in the beat cycle. The maximum threshold elevation of the 5-Hz probe produced by the beating masker modulators was 7-12 dB greater than that produced by the individual components of the masker modulators. The threshold elevation produced by the beating masker modulators was 2-10 dB greater for 5-Hz probe modulation than for 3- or 7-Hz probe modulation. These results cannot be explained in terms of the spectra of the envelopes of the stimuli, as the beating masker modulators did not produce a 5-Hz component in the spectra of the envelopes. The threshold for detecting 5-Hz probe modulation in the presence of 5-Hz masker modulation varied with the relative phase of the probe and masker modulation. The pattern of results was similar to that found with the beating two-component modulators, except that thresholds were highest when the masker and probe were 180 degrees out of phase. The results are consistent with the idea that nonlinearities within the auditory system introduce distortion in the internal representation of the envelopes of the stimuli. In the case of two-component beating modulators, a weak component is introduced at the beat rate, and it has an amplitude minimum when the beat cycle is at its maximum. The results could be fitted well using two models, one based on the concept of a sliding temporal integrator and one based on the concept of a modulation filter bank.  相似文献   

12.
The ability to discriminate complex temporal envelope patterns submitted to temporal compression or expansion was assessed in normal-hearing listeners. An XAB, matching-to-sample-procedure was used. X, the reference stimulus, is obtained by applying the sum of two, inharmonically related, sinusoids to a broadband noise carrier. A and B are obtained by multiplying the frequency of each modulation component of X by the same time expansion/compression factor, alpha (alphain[0.35-2.83]). For each trial, A or B is a time-reversed rendering of X, and the listeners' task is to choose which of the two is matched by X. Overall, the results indicate that discrimination performance degrades for increasing amounts of time expansion/compression (i.e., when alpha departs from 1), regardless of the frequency spacing of modulation components and the peak-to-trough ratio of the complex envelopes. An auditory model based on envelope extraction followed by a memory-limited, template-matching process accounted for results obtained without time scaling of stimuli, but generally underestimated discrimination ability with either time expansion or compression, especially with the longer stimulus durations. This result is consistent with partial or incomplete perceptual normalization of envelope patterns.  相似文献   

13.
An acoustic pointing task was used to measure extents of laterality produced by combinations of ongoing envelope-based interaural temporal disparities (ITDs) and interaural intensitive disparities (IIDs) of 4-kHz-centered raised-sine stimuli [Bernstein and Trahiotis, J. Acoust. Soc. Am. 125, 3234-3242 (2009),] while varying, parametrically, their peakedness, depth of modulation, and frequency of modulation. The study was designed to assess whether IIDs act as "weights" within the putative "binaural display" at high spectral frequencies (where the envelopes convey ITD-information) as appears to be the case at low spectral frequencies (where the waveforms, i.e., fine-structure and envelopes, convey ITD-information). The data indicate that envelope-based IIDs do principally act as weights and that they appear to exert their influence on lateral position independently of the influence of ITDs. Quantitative analyses revealed that an augmented form of the cross-correlation-based "position-variable" model of Stern and Shear [J. Acoust. Soc. Am. 100, 2278-2288 (1996)] accounted for 94% of the variance in the data. This success notwithstanding, for a small subset of the data, predictions could be improved by assuming that the listeners utilized information within auditory filters having center frequencies above 4 kHz.  相似文献   

14.
Standard continuous interleaved sampling processing, and a modified processing strategy designed to enhance temporal cues to voice pitch, were compared on tests of intonation perception, and vowel perception, both in implant users and in acoustic simulations. In standard processing, 400 Hz low-pass envelopes modulated either pulse trains (implant users) or noise carriers (simulations). In the modified strategy, slow-rate envelope modulations, which convey dynamic spectral variation crucial for speech understanding, were extracted by low-pass filtering (32 Hz). In addition, during voiced speech, higher-rate temporal modulation in each channel was provided by 100% amplitude-modulation by a sawtooth-like wave form whose periodicity followed the fundamental frequency (F0) of the input. Channel levels were determined by the product of the lower- and higher-rate modulation components. Both in acoustic simulations and in implant users, the ability to use intonation information to identify sentences as question or statement was significantly better with modified processing. However, while there was no difference in vowel recognition in the acoustic simulation, implant users performed worse with modified processing both in vowel recognition and in formant frequency discrimination. It appears that, while enhancing pitch perception, modified processing harmed the transmission of spectral information.  相似文献   

15.
Belgian Waterslager canaries (BWC) are bred to produce a distinctive low-pitched song with energy restricted to a lower range of frequencies than in other types of canaries. Previous studies have shown a high frequency hearing loss primarily above 2000 Hz that is related to hair cell abnormalities in BWC, but little is known about auditory perception in these birds. Here, frequency, duration, and intensity discrimination, temporal integration, gap detection, and discrimination of temporally reversed harmonic complexes in BWC were measured and compared to normal-hearing non-BWC. BWC had excellent frequency discrimination ability at 1000 Hz, but showed poor frequency discrimination compared to non-BWC at frequencies in the region of hearing loss. Duration and intensity discrimination were not adversely affected in BWC. Temporal integration was reduced in BWC, except at 2000 Hz. Gap detection and discrimination of temporally reversed stimuli were somewhat better in BWC than in non-BWC. Those tests that relied primarily on temporal processing were less affected by the cochlear damage in BWC than tests that probably relied more on audibility and spectral analysis. Thus, despite significant high frequency hearing loss and extensive damage along the basilar papilla, BWC retain relatively good hearing abilities under many conditions.  相似文献   

16.
The ability to detect the existence of amplitude modulation at a target frequency is reduced when amplitude modulation exists at a flanking frequency. This effect has been termed modulation detection interference (MDI) [Yost and Sheft, J. Acoust. Soc. Am. 85, 848-857 (1989)]. One explanation for MDI holds that the masking and target frequencies are grouped together by the auditory system such that it is difficult to analyze the modulation at each frequency separately. The present study investigated conditions where the asynchrony of temporal gating of the target and flanking frequencies was manipulated in order to make the frequencies more or less likely to be grouped together by the auditory system and perceived as originating from a single putative source. A second experimental manipulation attempted to perceptually segregate the masking and target frequencies on the basis of harmonicity or spectral proximity. The results of the experiments indicated that manipulations that were intended to enhance the segregation of the masking and target frequencies reduced the magnitude of MDI effects. This generally supported an interpretation that MDI is related in some way to auditory grouping. A final experiment was performed in which the subject had to detect the presence of amplitude modulation, but also had to identify which of two frequency components carried the modulation. Subjects were often poor in discriminating which of two frequencies was amplitude modulated, even when the modulation itself was clearly audible. It was concluded that part of the MDI effect might be due to the poor ability of the auditory system to associate modulation with the carrier of the modulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In humans, masking by harmonic complexes is dependent not only on the frequency content of the masker, but also its phase spectrum. Complexes that have highly modulated temporal waveforms due to the selection of their component phases usually provide less masking than those with flatter temporal envelopes. Moreover, harmonic complexes that are created with negative Schroeder phases (component phases monotonically decreasing with increasing harmonic frequency) may provide more masking than those created with positive Schroeder phases (monotonically increasing phase), even though both temporal envelopes are equally flat. To date, there has been little comparative work on the masking effectiveness of harmonic complexes. Using operant conditioning and the method of constant stimuli, masking of pure tones by harmonic complexes was examined in budgerigars at several different masker levels for complexes constructed with two different fundamental frequencies. In contrast to humans, thresholds in budgerigars differed very little for the two Schroeder-phase waveforms. Moreover, when there was a difference in masking by these two waveforms, the positive Schroeder was the more effective masker--the reverse of that described for humans. Control experiments showed that phase selection was relevant to the masking ability of harmonic complexes in budgerigars. Release from masking occurred when the components were in coherent phase, compared with a complex with random phases selected for each component. It is suggested that these psychoacoustic differences may emerge from structural and functional differences between the avian and mammalian peripheral auditory systems involving traveling wave mechanics and spectral tuning characteristics.  相似文献   

18.
This article presents the results of two experiments investigating performance on a monaural envelope correlation discrimination task. Subjects were asked to discriminate pairs of noise bands that had identical envelopes (referred to as correlated stimuli) from pairs of noise bands that had envelopes which were independent (uncorrelated stimuli). In the first experiment, a number of stimulus parameters were varied: the center frequency of the lower frequency noise band in a pair, f1; the frequency separation between component noise bands; the duration of the stimuli; and the bandwidth of the component noise bands. For a long stimulus duration (500 ms) and a relatively wide bandwidth (100 Hz), subjects could easily discriminate correlated from uncorrelated stimuli for a wide range of frequency separations between the component noise bands. This was true both when f1 was 350 Hz, and when f1 was 2500 Hz. In each case, narrowing the bandwidth to 25 Hz, or shortening the duration to 100 ms, or both, made the task more difficult, but not impossible. In the second experiment, the level of the higher frequency noise band in a pair was varied. Performance did not decrease monotonically as the level of this band was decreased below the level of the other band, and only showed marked impairment when the level of the higher frequency band was at least 60 dB below that of the lower frequency band. The pattern of results in these two experiments is different from that which is obtained when the same stimulus parameters are varied in experiments investigating comodulation masking release (CMR). This suggests that the mechanisms underlying CMR and those underlying the discrimination of envelope correlation are not identical.  相似文献   

19.
Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks.  相似文献   

20.
The research presented here concerns the simultaneous grouping of the components of a vocal sound source. McAdams [J. Acoust. Soc. Am. 86, 2148-2159 (1989)] found that when three simultaneous vowels at different pitches were presented with subaudio frequency modulation, subjects judged them as being more prominent than when no vibrato was present. In a normal voice, when the harmonics of a vowel undergo frequency modulation they also undergo an amplitude modulation that traces the spectral envelope. Hypothetically, this spectral tracing could be one of the criteria used by the ear to group components of each vowel, which may help explain the lack of effect of frequency modulation coherence among different vowels in the previous study. In this experiment, two types of vowel synthesis were used in which the component amplitudes of each vowel either remained constant with frequency modulation or traced the spectral envelope. The stimuli for the experiment were chords of three different vowels at pitch intervals of five semitones (ratio 1.33). All the vowels of a given stimulus were produced by the same synthesis method. The subjects' task involved rating the prominence of each vowel in the stimulus. It was assumed that subjects would judge this prominence to be lower when they were not able to distinguish the vowel from the background sound. Also included as stimulus parameters were the different permutations of the three vowels at three pitches and a number of modulation conditions in which vowels were unmodulated, modulated alone, and modulated either coherently with, or independently of, the other vowels. Spectral tracing did not result in increased ratings of vowel prominence compared to stimuli where no spectral tracing was present. It would therefore seem that it has no effect on grouping components of sound sources. Modulated vowels received higher prominence ratings than unmodulated vowels. Vowels modulated alone were judged to be more prominent than vowels modulated with other vowels. There was, however, no significant difference between coherent and independent modulation of the three vowels. Differences among modulation conditions were more marked when the modulation width was 6% than when it was 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号