首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this work, we study a completely integrable dissipative equation. The Burgers equation is extended by using the sense of the Kadomtsev–Petviashvili (KP) equation. The new established Burgers–KP equation is studied by using the tanh–coth method to obtain kink solutions and periodic solutions. We also apply the powerful Hirota’s bilinear method to establish exact N-soliton solutions for the derived integrable equation.  相似文献   

2.
An auto-Bäcklund transformation (BT) to generalized Wick-type stochastic Kadomtsev–Petviashvili equation (GWSKPE) is obtained by using extended homogeneous balance method. Making use of the auto-BT and Hermite transformation, we obtain many families of exact solutions of the GWSKPE by choosing a special seed solution, which include single soliton-like solutions, multi-soliton-like solutions and special-soliton-like solutions.  相似文献   

3.
In this paper, the first integral method is used to construct exact solutions of the modified KdV–KP equation and the Burgers–Kadomtsev–Petviashvili (Burgers–KP) equation. This method can be applied to nonintegrable equations as well as to integrable ones. This method is based on the theory of commutative algebra.  相似文献   

4.
A generalized version of the dressing method is applied to solve the variable-coefficient coupled Kadomtsev–Petviashvili (cKP) equations. The compatibility of the dressed operators leads to two sets of equations, which are reduced to the variable-coefficient cKP equations. With the help of the bilinear transformation method, the bilinearized variable-coefficient cKP equations are obtained. Further, the N-soliton solution of the variable-coefficient cKP equations is given by using Pfaffian.  相似文献   

5.
In this paper, the F-expansion method is extended and applied to construct the exact solutions of the (2 + 1)-dimensional generalized Wick-type stochastic Kadomtsev–Petviashvili equation by the aid of the symbolic computation system Maple. Some new stochastic exact solutions which include kink-shaped soliton solution, singular soliton solution and triangular periodic solutions are obtained via this method and Hermite transformation.  相似文献   

6.
We establish a two‐wave mode equation for the integrable Kadomtsev–Petviashvili equation, which describes the propagation of two different wave modes in the same direction simultaneously. We determine the necessary conditions that make multiple soliton solutions exist for this new equation. The simplified Hirota's method will be used to conduct this work. We also use other techniques to obtain other set of periodic and singular solutions for the two‐mode Kadomtsev‐Petviashvili equation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, the Sawada–Kotera–Ito seventh‐order equation is studied. He's variational iteration method and Adomian's decomposition method (ADM) are applied to obtain solution of this equation. We compare these methods together. The study highlights the significant features of the employed methods and its capability of handling completely integrable equations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 887–897, 2011  相似文献   

8.
A class of integrable differential–difference systems is constructed based on auxiliary linear equations defined on sequences of Zakharov–Shabat formal dressing operators. We show that the auxiliary equations are compatible with the evolution equations for the Kadomtsev–Petviashvili (KP) hierarchy. The investigation results are used to elaborate a modified version of Krichever rational reductions for KP hierarchies.  相似文献   

9.
In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.  相似文献   

10.
We study the (2+1)-dimensional model proposed by Kadomtsev and Petviashvili (KP) to describe slowly varying nonlinear waves in a dispersive medium. Applying an appropriate Lie transformation and following the method introduced by Tajiri et al., the KP equation is reduced to a one-dimensional equation, that is, to a certain version of the Boussinesq equation (BqE). Then, we solve the BqE by the Hirota method, and finally we use the inverse transformation in order to obtain de KP solutions. We Analyze some remarkable properties of the solutions found in this work.  相似文献   

11.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov–Kuznetsov (ZK) equation and the Kadomtsev–Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

12.
A new generalized Jacobi elliptic function expansion method is described and used for constructing many new exact travelling wave solutions for nonlinear partial differential equations (PDEs) in a unified way. We obtain many new Jacobi and Weierstrass double periodic elliptic function solutions for (3 + 1)-dimensional Kadmtsev–Petviashvili (KP) equation. This method can be applied to many other equations.  相似文献   

13.
The fully integrable KP equation is one of the models that describes the evolution of nonlinear waves, the expansion of the well-known KdV equation, where the impacts of surface tension and viscosity are negligible. This paper uses the Modified Extended Direct Algebraic (MEDA) method to build fresh exact, periodic, trigonometric, hyperbolic, rational, triangular and soliton alternatives for the (2 + 1)-dimensional Gardner KP equation. These solutions that we discover in this article will help us understand the phenomena of the (2 + 1)-dimensional Gardner KP equation. Comparing the study in this paper and existing work, we find more exact solutions with soliton and periodic structures and the rational function solution in this paper is more general than the rational solution in existing literature. Most of the Jacobi elliptic function solutions and the mixed Jacobi elliptic function solutions to the (2 + 1)-dimensional Gardner KP equation discovered in this paper, to the best of our highest understanding are not seen in any existing paper until now.  相似文献   

14.
It is shown how to derive master symmetries for nonlinear lattice equations systematically using the basic principles but without using either their zero curvature equations or the bi-Hamiltonian structure. This has been illustrated for Volterra equation, two coupled Belov–Chaltikian (BC), and three coupled Blaszak–Marciniak (BM) lattice equations. The existence of a sequence of master symmetries is one of the characteristics of completely integrable nonlinear partial differential and differential–difference equations admitting Hamiltonian structure.  相似文献   

15.
In this paper, a convergence proof of the Adomian decomposition method (ADM) applied to the generalized nonlinear Burgers–Huxley equation is presented. The decomposition scheme obtained from the ADM yields an analytical solution in the form of a rapidly convergent series. The direct symbolic–numeric scheme is shown to be efficient and accurate.  相似文献   

16.
The existence of the Lax representation is established for the generalized Kadomtsev-Petviashvili (KP) model. One describes the class of completely integrable, two-dimensionalized equations of the KP type on operator manifolds.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 6, pp. 800–806, June, 1990.  相似文献   

17.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov-Kuznetsov (ZK) equation and the Kadomtsev-Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

18.
Kadomtsev–Petviashvili (KP)-type equations are seen in fluid mechanics, plasma physics, and gas dynamics. Hereby we consider an integrable KP-based system. With the Hirota method, symbolic computation and truncated Painlevé expansion, we obtain bright one- and two-soliton solutions. Figures are plotted to help us understand the dynamics of regular and resonant interactions, and we find that the regular interaction of solitons is completely elastic. Based on the asymptotic and graphical behavior of the two-soliton solutions, we analyze two kinds of resonance between the solitons, both of which are non-completely elastic. A triple structure, a periodic resonant structure in the procedure of interactions and a high wave hump in the vicinity of the crossing point, can be observed. Through the linear stability analysis, instability condition for the soliton solutions can be given, which might be useful, e.g., for the ship traffic on the surface of water.  相似文献   

19.
It is well known that the Korteweg–de Vires (KdV) equation can describe small but finite amplitude dust acoustic waves in a dusty plasmas. In this paper, we use the reductive perturbation method and derive a Kadomtsev–Petviashvili (KP) equation, a modified KP (MKP) equation and a coupled KP equation for unmagnetized, collisionless, cold, and two-ion-temperature dusty plasmas with N different species of dust grains. We find that if a solitary wave exist in this system, the smaller grains have larger velocities and propagate longer distances than that of larger particles. The comparisons are given between the dusty plasma composed by different dust particles and the mono-sized dusty plasma.  相似文献   

20.
Nonlinear wave propagation through a 2D lattice is investigated. Using reductive perturbation method, we show that this can be described by Kadomtsev–Petviashvili (KP) equation for quadratic nonlinearity and modified KP equation for cubic nonlinearity, respectively. With quadratic and cubic nonlinearities together, the system is governed by an integro-differential equation. We have also checked the integrability of these equations using singularity analysis and obtained solitary wave solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号