首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes flow and heat transfer characteristics of laminar mixed-convection flows of water with sub-millimeter bubbles in a vertical channel. We use thermocouples and a particle tracking velocimetry technique for the temperature and velocity measurements. The working fluid used is tap water, and hydrogen bubbles generated by electrolysis of the water are used as the sub-millimeter bubbles. The Reynolds number of the main flow ranges from 100 to 200. The ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection (the heat transfer coefficient ratio) ranges from 1.24 to 1.38. The heat transfer coefficient ratio decreases with the increase in the Reynolds number. We conclude from velocity measurements that this decrease is mainly caused by a decrease in the advection effect due to sub-millimeter bubbles.  相似文献   

2.
李琪  王兆宇  胡鹏飞 《力学学报》2022,54(11):2994-3009
基于Brinkman-extended Darcy模型和局部热平衡模型,对多层平行裂隙型多孔介质通道内的流动传热特性进行研究.获得了多层平行裂隙型多孔介质通道内各区域的速度场、温度场、摩擦系数及努塞尔数解析解,并分析了裂隙层数、达西数、空心率、有效热导率之比等对通道内流动传热特性的影响.结果表明:达西数较小时,通道多孔介质层内会出现不随高度变化的达西速度,此达西速度会随裂隙层数的增加而增大,但却不受各裂隙层下多孔介质层位置变化的影响.增加裂隙层数会减弱空心率对压降的影响,会使通道内流体压降升高,但升高程度会逐渐降低.增大热导率之比或减小空心率会使多裂隙通道内出现阶梯式温度分布,而在较小热导率之比或较大空心率时多裂隙情况下的温度分布曲线会趋于一致.此外,当热导率之比较小时,多层裂隙通道内的传热效果在任何空心率下都要优于单裂隙情况,当热导率之比较大时,存在临界空心率使各裂隙层数通道内的传热效果相同,且多裂隙通道内继续增加裂隙层数对传热强度影响不大.  相似文献   

3.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

4.
This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.  相似文献   

5.
Steady and pulsatile flow and heat transfer in a channel lined with two porous layers subject to constant wall heat flux under local thermal non-equilibrium (LTNE) condition is numerically investigated. To do this, a physical boundary condition in the interface of porous media and clear region of the channel is derived. The objective of this work is, first, to assess the effects of local solid-to-fluid heat transfer (a criterion indicating on departure from local thermal equilibrium (LTE) condition), solid-to-fluid thermal conductivity ratio and porous layer thickness on convective heat transfer in steady condition inside a channel partially filled with porous media; second, to examine the impact of pulsatile flow on heat transfer in the same channel. The effects of LTNE condition and thermal conductivity ratio in pulsatile flow are also briefly discussed. It is observed that Nusselt number inside the channel increases when the problem is tending to LTE condition. Therefore, careless consideration of LTE may lead to overestimation of heat transfer. Solid-to-fluid thermal conductivity ratio is also shown to enhance heat transfer in constant porous media thickness. It is also revealed that an increase in the amplitude of pulsation may result in enhancement of Nusselt number, while Nusselt number has a minimum in a certain frequency for each value of amplitude.  相似文献   

6.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

7.
Flow over a rectangular porous block placed in a fixed width channel is considered and the influence of block aspect ratio on the heat transfer rate from the block is examined. A non-porous solid block is also accommodated to compare the effect of porosity on the flow field and heat transfer characteristics. Aspect ratio and the porosity of the block are varied in the simulations. A numerical scheme employing a control volume approach is considered when predicting the flow and temperature fields. The Reynolds number is selected to yield the mix convection situation in the flow field. It is found that the aspect ratio significantly influences Nu and Gr numbers, in which case increasing the aspect ratio enhances Nu while lowering Gr. Increasing porosity improves the heat transfer rates from the porous block, provided that at high aspect ratios, this situation ceases due to blockage effect of the body in the channel.  相似文献   

8.
Experimental heat transfer measurements and analysis for mixed convection in a vertical square channel are presented. Water flow directions are selected such that buoyancy assists or opposes the bulk flow pressure gradient. Unlike most previous experiments with symmetrically heated circular tubes, the present configuration uses an asymmetric heating condition (two sides heated and two sides insulated) and shows significant increase in the Nusselt number for both assisted and opposed flow conditions. Observed heat transfer coefficient distributions are different from the symmetrically heated channels; and this difference in heat transfer coefficient is attributed to the formation of buoyancy driven large-scale flow structures. In general, opposed flow shows higher heat transfer coefficients, and the Nusselt number ratio is observed to increase as Gr/Re or Gr/Re2 ratios increase for both assisted and opposed flow conditions. A correlation based on the buoyancy parameter predicts the heat transfer pattern well in both assisted and opposed mixed convection. The range of Reynolds numbers discussed (Re=400–10,000) is of importance for direct numerical simulations and the details provided here can serve as the benchmark data required for complicated buoyancy affected turbulence simulations.  相似文献   

9.
This article aims to numerically investigate mixed convection heat transfer in a two-dimensional horizontal channel with an open cavity. A discrete heat source is considered to be located on one of the walls of the cavity. Three different heating modes are considered which relate to the location of the heat source on three different walls (left, right and bottom) of the cavity. The analysis is carried out for a range of Richardson numbers and cavity aspect ratios. The results show that there are noticeable differences among the three heating modes. When the heat source is located on the right wall, the cavity with an aspect ratio of two has the highest heat transfer rate compared to other cavity heating modes. Moreover, when the heat source is located on the bottom wall, the flow field in the cavity with an aspect ratio of two experiences a fluctuating behaviour for Richardson number of 10. The results also show that at a fixed value of Richardson number, all three different heating modes show noticeable improvements in the heat transfer mechanism as the cavity aspect ratio increases.  相似文献   

10.
Summary The problem of convective magnetohydrodynamic channel flow in a vertical channel subjected simultaneously to an axial temperature gradient and a pressure gradient is examined when the thermal and the electrical conductance of the channel walls are arbitrary. The effects of wall conductances on the flow rate and heat transfer are found and discussed. When the vertical temperature gradient is negative, which is the case of heating from below, there exists a critical Rayleigh number at which the fluid becomes unstable. The critical Rayleigh number is also found as a function of the wall conductances.On leave from the State University of New York at Buffalo.  相似文献   

11.
This study is to simulate the turbulent flow field and heat transfer when cold fluid flows through a finite-length circular channel, which meantime undergoes a reciprocating motion using a numerical method. The mass, momentum and energy conservation equations and turbulent k- equations are derived for a turbulent flow field in a reciprocating coordinate by a coordinate transformation from the stationary coordinate system. The SIMPLE-C scheme is used to investigate heat transfer in a cooling channel undergoing a reciprocating motion by changing parameters and cooling mediums. The parameters are Reynolds number (7170 to 20000) and Pulsating number (1.55 to 4.65). The results show that the averaged Nusselt number increase with increasing both Reynolds number and Pulsating number, and the averaged Nusselt number of cooling oil is lower than that of water at the same incoming flow rate for both the stationary and reciprocating channel.  相似文献   

12.
This article is concerned with the effects of flow and migration of nanoparticles on heat transfer in a straight channel occupied with a porous medium. Investigation of force convective heat transfer of nanofluids in a porous channel has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The fully developed flow and steady Darcy?CBrinkman?CForchheimer equation is employed in porous channel. The thermal equilibrium model is assumed between nanofluid and solid phases. It is assumed that the nanoparticles are distributed non-uniformly inside the channel. As a result the volume fraction distribution equation is also coupled with governing equations. The effects of parameters such as Lewis number, Schmidt number, Brownian diffusion, and thermophoresis on the heat transfer are completely studied. The results show that the local Nusselt number is decreased when the Lewis number is increased. It is observed that as the Schmidt number is increased, the wall temperature gradient is decreased and as a consequence the local Nusselt number is decreased. The effects of Lewis number, Schmidt number, and modified diffusivity ratio on the volume fraction distribution are also studied and discussed.  相似文献   

13.
The effects of variable physical properties on the flow and heat transfer characteristics of simultaneously developing slip-flow in rectangular microchannels with constant wall temperature are numerically investigated. A colocated finite-volume method is used in order to solve the mass, momentum and energy equations in their most general form. Various channel aspect ratios are studied at different Knudsen numbers. Simulations indicate that the constant physical property assumption can result in under/over-prediction of the local friction and heat transfer coefficients depending on the problem configuration. Density and thermo-physical property variations have significant effects on predicting flow and heat transfer characteristics in the developing and fully-developed regions. The degree of discrepancy varies for different cases depending on Knudsen number, aspect ratio and the temperature difference between the channel inlet and the wall. The results suggest that even low temperature differences can alter the friction and heat transfer coefficients considerably.  相似文献   

14.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

15.
纵向涡强化换热的实验研究   总被引:4,自引:0,他引:4  
姚刚  杨泽亮 《实验力学》2001,16(2):158-162
在流道内安装三角翼对涡发生器可以产生纵向涡旋,本文研究了Re=800-8000范围内,以空气作为介质,涡发生器对加热片的强化换热效果,并通过红外热像仪测量加热片面的温度场,结果表明:与光滑加热片换热面比较,加装三角翼对涡发生器后,强化换热效果明显。本文条件下,在雷诺数为6000时,加装涡发生器整体强化换热效果达到50.8%。  相似文献   

16.
The effect of time-dependent pressure pulsations on heat transfer in a pipe flow with constant temperature boundaries is analysed numerically when the viscosity of the pulsating fluid is an inverse linear function of the temperature. The coupled differential equations are solved using Crank-Nicholson semi-implicit finite difference formulation with some modifications.The results indicate local variations in heat transfer due to pulsations. They are useful in the design of heat exchangers working under pulsating flow conditions. The analytical results are presented for both heating and cooling. The conditions under which pulsating flows can augment the heat transfer are discussed. The results are applicable for heat exchangers with fluids of high Prandtl number.  相似文献   

17.
This study investigates numerically the turbulent flow and heat transfer characteristics of a T-junction mixing, where a porous media flow is vertically discharged in a 3D fully developed channel flow. The fluid equations for the porous medium are solved in a pore structure level using an Speziale, Sarkar and Gatski turbulence model and validated with open literature data. Overall, two types of porous structures, consisted of square pores, are investigated over a wide range of Reynolds numbers: an in-line and a staggered pore structure arrangement. The flow patterns, including the reattachment length in the channel, the velocity field inside the porous medium as well as the fluctuation velocity at the interface, are found to be strongly affected by the velocity ratio between the transversely interacting flow streams. In addition, the heat transfer examination of the flow domain reveals that the temperature distribution in the porous structure is more uniform for the staggered array. The local heat transfer distributions inside the porous structure are also studied, and the general heat transfer rates are correlated in terms of area-averaged Nusselt number accounting for the effects of Reynolds number, velocity ratio as well as the geometrical arrangement of the porous structures.  相似文献   

18.
A method is developed to capture the distribution of surface temperature while simultaneously imaging the bubble motions in diabatic flow boiling in a horizontal minichannel. Liquid crystal thermography is used to obtain highly resolved surface temperature measurements on the uniformly heated upper surface of the channel. High-speed images of the flow field are acquired simultaneously and are overlaid with the thermal images. The local surface temperature and heat transfer coefficient can be analyzed with the knowledge of the nucleation site density and location, and bubble motion and size evolution. The horizontal channel is 1.2 mm high × 23 mm wide × 357 mm long, and the working fluids are Novec 649 and R-11. Optical access is through a machined glass plate which forms the bottom of the channel. The top surface is an electrically heated 76 μm-thick Hastelloy foil held in place by a water-cooled aluminum and glass frame. The heat loss resulting from this construction is computed using a conduction model in Fluent. The model is driven by temperature measurements on the foil, glass plate and aluminum frame. This model produces a corrected value for the local surface heat flux and enables the computation of the bulk fluid temperature and heat transfer coefficient along the channel. The streamwise evolution of the heat transfer coefficient for single-phase laminar flow is compared to theoretical values for a uniform-flux boundary condition. Examples of the use of the facility for visualizing subcooled two-phase flows are presented. These examples include measurements of the surface temperature distribution around active nucleation sites and the construction of boiling curves for locations along the test surface. Points on the curve can be associated with specific image sequences so that the role of mechanisms such as nucleation and the sliding of confined bubbles may be discerned.  相似文献   

19.
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h  = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.  相似文献   

20.
The present investigation is devoted to the study of fully developed mixed convective flow through a vertical porous channel. The lateral variations of porosity and thermal diffusivity in the bed near the wall, are approximated by exponential functions. The correlation between permeability and porosity is brought through Kozney-Carman approximation. The volume averaged one dimensional low speed momentum equation proposed by Vafai is employed for the analysis of the problem. Results are obtained for steady heating of ascending cold fluid and steady cooling of ascending hot fluid. For the above physical situations it is observed that the heat transfer rate, and ratio of friction factor increases with increase in porous parameter, whereas the ratio of mass flow rate decreases with increase in porous parameter. The velocity profiles exhibit hydrodynamic channelling and peak velocity shifts towards the wall for higher values of the porous parameter. For steady heating of ascending could fluid increase in Rayleigh number enhances the heat transfer rate, and mass flow rate, while it reduces the ratio of friction factor. An opposite trend is observed for the case of steady cooling of ascending hot fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号