首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The persistence behavior for fluctuating steps on the Si(111)-(sqrt[3]xsqrt[3])R30 degrees -Al surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970 K. Using the standard persistence definition, the measured persistence probability displays power-law decay with an exponent of theta=0.77+/-0.03. This is consistent with the value of theta=3/4 predicted for attachment-detachment limited step kinetics. If the persistence analysis is carried out in terms of return to a fixed-reference position, the measured probability decays exponentially. Numerical studies of the Langevin equation used to model step motion corroborate the experimental observations.  相似文献   

2.
We present an exact solution for the distribution P(h(m),L) of the maximal height h(m) (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h(m),L)=L(-1/2)f(h(m)L(-1/2)) for all L>0, where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds, but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.  相似文献   

3.
Nematic liquid crystals at rough and fluctuating interfaces are analyzed within the Frank elastic theory and the Landau–de Gennes theory. We study specifically interfaces that locally favor planar anchoring. In the first part we reconsider the phenomenon of Berreman anchoring on fixed rough surfaces, and derive new simple expressions for the corresponding azimuthal anchoring energy. Surprisingly, we find that for strongly aligning surfaces, it depends only on the geometrical surface anisotropy and the bulk elastic constants, and not on the precise values of the chemical surface parameters. In the second part, we calculate the capillary waves at nematic-isotropic interfaces. If one neglects elastic interactions, the capillary wave spectrum is characterized by an anisotropic interfacial tension. With elastic interactions, the interfacial tension, i.e., the coefficient of the leading q2 term of the capillary wave spectrum, becomes isotropic. However, the elastic interactions introduce a strongly anisotropic cubic q3 term. The amplitudes of capillary waves are largest in the direction perpendicular to the director. These results are in agreement with previous molecular dynamics simulations.  相似文献   

4.
We describe a framework for the multiscale analysis of atomistic surface processes which we apply to a model of homoepitaxial growth with deposition according to the Wolf-Villain model and concurrent surface diffusion. Coarse graining is accomplished by calculating renormalization-group (RG) trajectories from initial conditions determined by the regularized atomistic theory. All of the crossover and asymptotic scaling regimes known from computer simulations are obtained, but we also find that two-dimensional substrates show an intriguing transition from smooth to mounded morphologies along the RG trajectory.  相似文献   

5.
Using atomic force microscopy height maps, we resolve and quantify torsional fluctuations in one-dimensional amyloid fibril aggregates self-assembled from three different representative polypeptide systems. Furthermore, we show that angular correlation in these nanoscale structures is maintained over several microns, corresponding to many thousands of molecules along the fibril axis. We model disorder in the fibril in respect of both thermal fluctuations and structural defects, and determine quantitative values for the defect density, as well as the energy scales involved in the fundamental interactions stabilizing these generic structures.  相似文献   

6.
7.
We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green’s function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.  相似文献   

8.
9.
A lattice model of random surfaces is studied including configurations with arbitrary topologies, overhangs and bubbles. The Hamiltonian of the surface includes a term proportional to its area and a scale-invariant integral of the squared mean curvature. We propose a discretization of the curvature which ensures the scale-invariance of the bending energy on the lattice. Nonperturbative renormalization groups for the surface tension and the bending rigidity are applied, which are also valid at high temperatures and scales above the persistence length. We find at vanishing surface tensions a closed expression for the scale dependent rigidity including the usual logarithmic decay at low temperatures. Different scaling behaviours at non-vanishing tensions occur yielding characteristic length scales, which determine the structure of homogeneous droplet, lamellar, and microemulsion phases.  相似文献   

10.
In order to obtain information about the internal structure of fluctuating Cooper pairs in the pseudogap state and below the transition temperature of high Tc superconductors, we solve the Bethe-Salpeter equation for the two-electron propagator in order to calculate a “pair structure function” that depends on the internal distance between the partners and on the center of mass momentum P of the pair. We use an attractive Hubbard model with a local potential for s-wave and a separable potential for d-wave symmetry. The amplitude of gP for small ρ depends on temperature, chemical potential and interaction symmetry, but the ρ dependence itself is rather insensitive to the interaction strength. Asymptotically gP decreases as an inverse power of ρ for weak coupling, but exponentially when a pseudogap develops for stronger interaction. Some possibilities of observing the pair structure experimentally are mentioned.  相似文献   

11.
12.
We study the overdamped motion of a particle in a fluctuating one-dimensional periodic potential. The potential has no inversion symmetry, and the fluctuations are correlated in time. At finite temperatures, a stationary current is induced. The amplitude and the direction of the current depend on the details of the noise process that is responsible for the potential fluctuations. We discuss several limiting situations for a general case. Furthermore we calculate the current in the case of a piecewise linear potential for different noise processes and parameters. A detailed discussion of the results is given, including a discussion of the mechanism that is responsible for the current reversal. We compare the present results with results for transport in a ratchet-like potential due to a fluctuating force. We also discuss the biological relevance of the present models for molecular motors. We present a model for the motion of molecular motors that explains why similar molecular motors can move in different directions.  相似文献   

13.
14.
It has recently been proposed that fluctuating "pulled" fronts propagating into an unstable state should not be in the standard Kardar-Parisi-Zhang (KPZ) universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in d+1 bulk dimensions should be in the universality class of the ((d+1)+1)D KPZ equation rather than of the (d+1)D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.  相似文献   

15.
To describe the full spectrum of surface fluctuations of the interface between phase-separated colloid-polymer mixtures from low scattering vector q (classical capillary wave theory) to high q (bulklike fluctuations), one must take account of the interface's bending rigidity. We find that the bending rigidity is negative and that on approach to the critical point it vanishes proportionally to the interfacial tension. Both features are in agreement with Monte Carlo simulations.  相似文献   

16.
钟苏川  蔚涛  张路  马洪 《物理学报》2015,64(2):20202-020202
以往的研究大多考虑线性谐振子模型受频率涨落噪声的影响, 而当布朗粒子处于具有吸附能力的复杂环境时, 粒子质量也存在随机涨落. 因此, 本文研究具有质量及频率涨落两项噪声的二阶欠阻尼线性谐振子模型的随机共振现象. 利用Shapiro-Loginov公式和Laplace变换, 推导了系统响应一阶稳态矩及稳态响应振幅的解析表达式. 并根据稳态响应振幅的解析表达式, 建立了稳态响应振幅关于质量涨落噪声及频率涨落噪声各自的噪声强度能够诱导随机共振现象产生的充分必要条件. 仿真实验表明, 当系统参数满足本文所给出的充分必要条件要求时, 系统稳态响应振幅关于噪声强度的变化曲线具有明显的共振峰, 即此选定参数组合能够诱导系统产生随机共振现象.  相似文献   

17.
We define a block persistence probability p l (t) as the probability that the order parameter integrated on a block of linear size l has never changed sign since the initial time in a phase-ordering process at finite temperature T<T c . We argue that in the scaling limit of large blocks, where z is the growth exponent (), is the global (magnetization) persistence exponent and f(x) decays with the local (single spin) exponent for large x. This scaling is demonstrated at zero temperature for the diffusion equation and the large-n model, and generically it can be used to determine easily from simulations of coarsening models. We also argue that and the scaling function do not depend on temperature, leading to a definition of at finite temperature, whereas the local persistence probability decays exponentially due to thermal fluctuations. These ideas are applied to the study of persistence for conserved models. We illustrate our discussions by extensive numerical results. We also comment on the relation between this method and an alternative definition of at finite temperature recently introduced by Derrida [Phys. Rev. E 55, 3705 (1997)]. Received: 25 February 1998 / Revised: 24 July 1998 / Accepted: 27 July 1998  相似文献   

18.
An effective free energy for a fluctuating system is investigated using an exact (local) renormalization group (RG) equation. This equation accounts for the fluctuation interaction in a reduced manner (at Fisher exponent =0) and leads to a physical solution branch which gives realistic estimations for the free energy and nice critical exponents. It is shown that in spite of the monotonic character of the effective free energy in the critical region, all vertices should be taken into account in the effective Ginzburg-Landau-Wilson functional. The large-scale structure of the fluctuating field at a second-order phase transition is studied utilizing the calculated free energy and localized nonlinear excitations are found with profiles rather like those previously obtained in a model approach.  相似文献   

19.
20.
Stochastic growth phenomena on curved interfaces are studied by means of stochastic partial differential equations. These are derived as counterparts of linear planar equations on a curved geometry after a reparametrization invariance principle has been applied. We examine differences and similarities with the classical planar equations. Some characteristic features are the loss of correlation through time and a particular behavior of the average fluctuations. Dependence on the metric is also explored. The diffusive model that propagates correlations ballistically in the planar situation is particularly interesting, as this propagation becomes nonuniversal in the new regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号