首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The magnetocaloric effect ΔT has been studied by a direct method in two samples of the manganite Sm0.55Sr0.45MnO3, namely, a single crystal (sample A) and a ceramic sample (sample C). The temperature dependences of the ΔT effect of both samples exhibit a maximum at T max = 143.3 K for the sample A and T max = 143 K for the sample C. In these maxima, the values of the ΔT effect are 0.8 and 0.4 K in the magnetic field H = 14.2 kOe for the samples A and C, respectively. In addition, the ΔT(T) curve of the sample A has a minimum at T min = 120 K, in which ΔT = −0.1 K. The maximum value of the ΔT effect increases with an increase in the magnetic field H in the range of magnetic fields up to 14.2 kOe, and the rate of this increase at H > 8 kOe is higher than that at H < 8 kOe. These features of the ΔT effect are explained by the presence of ferromagnetic and antiferromagnetic A- and CE-type clusters in the samples.  相似文献   

2.
The structural properties and parameters of ferromagnetic resonance have been studied for Fe73.5CuNb3Si13.5B9 nanocrystalline alloys produced from the initial amorphous state via annealing under different conditions. The dependence of the linewidth of the ferromagnetic resonance on the grain size ΔHD 6 has been found. The result is discussed within the framework of the random magnetic anisotropy model.  相似文献   

3.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

4.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

5.
The magnetic susceptibility χ/χ0 and the longitudinal Δρ zz 0 and transverse Δρ xx 0 magnetoresistances have been measured as functions of the hydrostatic pressure P ≤ 7 GPa at room temperature in the high-temperature ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 with a chalcopyrite structure and the Curie temperature T c = 355 K. A pressure-induced metamagnetic transition from the low-magnetization state to the high-magnetization state has been observed in Cd0.7Mn0.3GeAs2 near the magnetic ordering temperature. This transition is accompanied by the hysteresis of the magnetic susceptibility and magnetoresistance.  相似文献   

6.
The electronic structures and magnetic properties of Si3CaC4 in zinc-blende phase has been studied by employing the first-principles method based on density functional theory (DFT). The calculations predict stable ferromagnetic ground state in Si3CaC4, resulting from calcium substitution for silicon. The calculated total magnetic moment is 2.00 μ B per supercell, which mainly arises from the Ca and neighboring C atoms. Band structures and density of states studies show half-metallic (HM) ferromagnetic property for Si3CaC4. The ferromagnetic coupling is generally observed between the Ca and C atoms. The ferromagnetism of Si3CaC4 can be explained by the hole-mediated double exchange mechanism. The sensitivity of half-metallicity of Si3CaC4 as a function of lattice constant is also discussed, and the half-metallicity can be kept in a wider lattice constant range.  相似文献   

7.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

8.
The dependences of the longitudinal magnetoresistance (Δρ zz 0)(P), transverse magnetoresistance (Δρ xx 0)(P), and magnetic susceptibility (χ/χ0(P)) on hydrostatic pressure P ≤ 7 GPa in the ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 at room temperature were investigated.  相似文献   

9.
The optical properties of Fe78Si10B12 ferromagnetic alloy in amorphous, crystalline, and intermediate structural states have been investigated by ellipsometry in the spectral range of 0.22–18 μm. It is established that alloy crystallization leads to a significant change in the optical constants and the frequency dependences of the dielectric functions calculated based on these optical constants. The structural reconstruction under heat treatment leads to an increase in the intensity and shift of interband absorption bands. The plasma and relaxation frequencies of conduction electrons are determined; their numerical values also depend on the degree of atomic ordering.  相似文献   

10.
Optical absorption spectra of the trigonal crystal of TbFe3(BO3)4 in the vicinity of the 7F65D4 transition in a Tb3+ ion were studied as a function of temperature (2–70 K) and magnetic field strength (0–60 kOe) at 2 K. The splitting of the excited states of Tb3+ due to both the magnetic ordering of iron and an external magnetic field was determined. Abrupt splitting of the absorption lines of Tb3+ at temperature TN of the magnetic ordering of the subsystem of iron was revealed, suggesting that the nature of such splitting is not entirely magnetic.  相似文献   

11.
The magnetic and crystal structures of the Pr0.5Sr0.5CoO3 metallic ferromagnet have been studied by the neutron diffraction technique. It is demonstrated that below 150 K, the compound is mesoscopically separated into two crystalline phases with different spatial symmetries and with different directions of the magnetic anisotropy. The phase separation exists down to 1.5 K, and at temperatures below 90 K, the low-symmetry phase occupies about 80% of the sample volume. The main structural difference between the phases is the configuration of oxygen atoms around praseodymium and, to a certain extent, around cobalt. The ferromagnetic structure with the magnetic moment lying in the basal plane of the structure (μCo ≈ 1.7 μ B at 1.5 K) arises at 234 K, whereas the component directed along the long axis of the unit cell appears at 130 K. The formation of the new structural phase and change in the orientation of the magnetic moment give rise to the anomalies of the physical and magnetic characteristics of this compound observed earlier at temperatures about 120 K.  相似文献   

12.
A complex investigation of the structural, magnetic, and magnetothermal properties of the Tb0.3Dy0.7Co2 compound synthesized with the use of high-purity rare-earth metals has been performed. The phase composition has been controlled using the X-ray structural analysis, and the topology of the alloy surface has been investigated using atomic-force microscopy. It has been established that the Tb0.3Dy0.7Co2 compound is single-phase, while the samples selected for measurements possess a clearly pronounced texture. The magnetization has been measured using a vibrating-sample magnetometer in the fields up to 100 kOe in a temperature range from 4.2 to 200 K. The Curie temperature of the compound is 170 K. The data on the temperature dependence of heat capacity of Tb0.3Dy0.7Co2 have been obtained. The magnetocaloric effect ΔT has been measured by a direct method in the fields up to 18 kOe applied both along and perpendicularly to the texture axis. The anisotropic behavior of the magnitude ΔT for this compound, which possesses the cubic structure, has been found. The maximum value of the magnetocaloric effect ΔT = 2.3 K (ΔH = 18 kOe) has been observed upon applying the magnetic field along the texture axis.  相似文献   

13.
We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe2VAl and Fe2CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe2VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties.  相似文献   

14.
A monocrystal ofFe 3 O 4 is characterized by resistance, magnetoresistance and magnetic measurements in a temperature range from 4.2 K to 350 K and magnetic field-cycling from −9 T to 9 T. The resistance measurements revealed a metal-insulator Verwey transition (VT) atT v =123.76 K with activation energy E=92.5 meV at T >T v and temperature-substitute for the activation energy below the VT,T 0=E/k B ≈3800 K within 70 K–110K. The magnetotransport results independently verified the VT at 123.70 K, with discontinuous change in the magnetic moment ΔM≈0.21 ΔM≈0.21μ B and resistance hysteresis, dependent on the magnetic field in a narrow temperature range of 0.4° around theT v . The magnetic characterization established self consistentlyT v as ≈123.67 K, the jump in the magnetization at the VT≈0.25μ B and confirmed, that the magnetocrystalline anisotropy is the main microscopic mechanism responsible for the magnetization of the monocrystal (88%) with additional natural and imposed defects contributing as 12%.  相似文献   

15.
The structural and magnetic properties of the mesoporous systems based on silicon dioxide with a regular hexagonal arrangement of pores several microns in length and several nanometers in diameter, which are filled with iron compound nanofilaments in various chemical states, are studied in detail. The studies are performed using the following mutually complementary methods: transmission electron microscopy, SQUID magnetometry, electron spin resonance, Mössbauer spectroscopy, polarized neutron small-angle diffraction, and synchrotron radiation diffraction. It is shown that the iron nanoparticles in pores are mainly in the γ phase of Fe2O3 with a small addition of the α phase and atomic iron clusters. The effective magnetic field acting on a nanofilament from other nanofilaments is 11 mT and has a dipole nature, the ferromagnetic–paramagnetic transition temperature is in the range 76–94 K depending on the annealing temperature of the samples, and the temperature that corresponds to the change in the magnetic state of the iron oxide nanofilaments is T ≈ 50–60 K at H = 0 and T ≈ 80 K at H = 300 mT. It is also shown that the magnetization reversal of an array of nanofilaments is caused by the magnetostatic interaction between nanofilaments at the fields that are lower than the saturation field.  相似文献   

16.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

17.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is anti-ferromagnetic with T Nexp ∼ 250 K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered “plaquettes” or “zigzags”), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show τ1 (plaquettes) spin configuration to be more favorable than τ2 (zigzags).  相似文献   

18.
The electronic structures and magnetic properties for Rh-doped SnO2 crystals have been investigated by density functional theory. The results demonstrate a magnetic moment, which mainly arises from d orbital of Rhodium, of 1.0 μ B per Rhodium with a little contribution from the Oxygen atoms surrounding it. The Rh-doped SnO2 system exhibits half-metallic ferromagnetism with high Curie temperature. Several doped configurations calculations show that there are some robust ferromagnetic couplings between these local magnetic moments. The pd hybridization mechanism is responsible for the predicted ferromagnetism. These results suggest a recipe obtaining promising dilute magnetic semiconductor by doping nonmagnetic elements in SnO2 matrix.  相似文献   

19.
Measurements of the electrical resistivity as a function of temperature, ρ(T), for different values of applied magnetic field, Ba (0 ≤ Ba ≤ 50 mT), were performed in polycrystalline samples of Bi1.65Pb0.35Sr2Ca2 Cu3O10+δ subjected to different uniaxial compacting pressure (UCP). We have found appreciable differences in the grain orientation between samples by using X-ray diffractometry. From the X-ray diffraction patterns performed, in powder and pellet samples, we have estimated the Lotgering factor along the (00l) direction, F(00l). The results indicate that F(00l) increases ~23% with increasing UCP suggesting that grains of these samples are preferentially aligned along the c-axis, which is parallel to the compacting direction. The resistive transition of the samples have been interpreted in terms of the thermally activated flux-creep model. In addition, the effective intergranular pinning energy, U0, have been determined for different applied magnetic field. The magnetic field dependence of U0, for Ba > 8 mT, was found to follow a H- α dependence with α = 0.5 for all samples. The analysis of the experimental data strongly suggested that increasing UCP results in appreciable changes in both the grain alignment and the grain connectivity of the samples. We have successfully interpreted the data by considering the existence of three different superconducting levels within the samples: the superconducting grains, the weak-links, and the superconducting clusters.  相似文献   

20.
Optical absorption spectra of trigonal crystal TbFe3(BO3)4 have been studied in the region of 7F65D4 transition in Tb3+ ion depending on temperature (2–220 K) and on magnetic field (0–60 kOe). Splitting of the Tb3+ excited states, both under the influence of the external magnetic field and effective exchange field of the Fe-sublattice, have been determined. Landé factors of the excited states have been found. Stepwise splitting of one of the absorption lines has been discovered in the region of the Fe-sublattice magnetic ordering temperature. This is shown to be due to the abrupt change of equilibrium geometry of the local Tb3+ ion environment only in the excited state of the Tb3+ ion. In general, the magnetic ordering is accompanied by temperature variations of the Tb3+ local environment in the excited states. The crystal field splitting components have been identified. In particular, it has been shown that the ground state (in D 3 symmetry approximation) consists of two close singlet states of A 1 and A 2 type, which are split and magnetized by effective exchange field of the Fe-sublattice. Orientations of magnetic moments of the excited electronic states relative to that of the ground state have been experimentally determined in the magnetically ordered state of the crystal. A pronounced shift of one of absorption lines has been observed in the vicinity of the TbFe3(BO3)4 structural phase transition. The temperature interval of coexistence of the phases is about 3 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号