首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

2.
3.
Interactions between the seven-coordinate tweezerlike [Fe(dapsox)(H2O)2]ClO4 complex (H2dapsox = 2,6-diacetylpyridine-bis(semioxamazide)) with different lithium salts (LiOTf, LiClO4, LiBF4, and LiPF6) in CH3CN have been investigated by electrochemical, spectrophotometric, 7Li and 19F NMR, kinetic, and DFT methods. It has been demonstrated that this complex acts as ditopic receptor, showing spectral and electrochemical ion-pair-sensing capability for different lithium salts. In general, the apparent binding constants for lithium salts increase in the order LiOTf < LiClO4 < LiBF4. From the electrochemical measurements, the apparent lithium salt binding constants for the Fe(III) and Fe(II) forms of the complex have been obtained, suggesting a stronger host-guest interaction with the reduced form of the complex. In the presence of LiPF6, the solution chemistry is more complex because of the hydrolysis of PF6-. The kinetics of the complexation of [Fe(dapsox)(CH3CN)2]+ by thiocyanate at -15 degrees C in acetonitrile in the presence of 0.2 M NBu4OTf shows two steps with the following rate constants and activation parameters: k(1) = 411 +/- 14 M(-1) s(-1); DeltaH(1) not equal = 9 +/- 2 kJ mol(-1); DeltaS1 not equal = -159 +/- 6 J K(-1) mol(-1); k(2) = 52 +/- 1 M(-1) s(-1); DeltaH(2) not equal = 4 +/- 1 kJ mol(-1); DeltaS(2) not equal = -195 +/- 3 J K(-1) mol(-1). The very negative DeltaS not equal values are consistent with an associative (A) mechanism. Under the same conditions but with 0.2 M LiOTf, k1Li and k2Li are 1605 +/- 51 and 106 +/- 2 M(-1) s(-1), respectively. The increased rate constants for the {[Fe(dapsox)(CH3CN)2] x LiOTf}+ adduct are in agreement with an associative mechanism. Kinetic and spectrophotometric titration measurements show stronger interaction between the lithium salt and the anion-substituted forms, [Fe(dapsox)(CH3CN)(NCS)] and [Fe(dapsox)(NCS)2]-, of the complex. These experiments demonstrate that in nonaqueous media lithium salts cannot be simply used as supporting electrolytes, since they can affect the kinetic behavior of the studied complex. DFT calculations revealed that the negatively charged alpha-oxyazine oxygen atoms are responsible for cation binding (electrostatic interactions), whereas the two terminal amide groups bind the anion via hydrogen bonding.  相似文献   

4.
Pentaammineruthenium moves on ambidentate nitrogen heterocycles by both rotation and linkage isomerization, which may affect the biological activity of potential ruthenium metallopharmaceuticals. The rapid rotation rates of [(NH3)5RuIII] coordinated to the exocyclic nitrogens of isocytosine (ICyt) and 6-methylisocytosine (6MeICyt) have been determined by 1H NMR. Since these rotamers can be stabilized by hydrogen bonding between the coordinated ammines and the N1 and N3 endocyclic nitrogens, rotamerization is under pH control. Spectrophotometrically (UV-vis) measured pKa values for the two endocyclic sites for the ICyt complex are 2.78 and 9.98, and for 6MeICyt are 3.06 and 10.21, which are probably weighted averages for ionization from N3 and N1, respectively. Activation parameters for the rotamerizations were determined by variable-temperature NMR at pKa1 < pH < pKa2 for the complexes with (ICyt-kappa N2)-, (6MeICyt kappa N2)-, and 2AmPym kappa N2. For [(6MeICyt kappa N2)(-)-(NH3)5RuIII]2+, delta H* = 1.6 kcal/mol, delta S* = -37 cal/mol K, and Ea = 2.2 kcal/mol. Due to strong RuIII-N pi-bonding, the activation enthalpies are approximately 10 kcal lower than the expected values for the free ligands. Rotameric structure is correlated with pKa values, pH-dependent reduction potentials, and 1H NMR parameters. Linkage isomers of [(2AmPym)(NH3)5Ru]n+ are reported in which RuII is coordinated to the endocyclic nitrogen (N1) and RuIII to the exocyclic nitrogen (N2). The rate constant for the kappa N2-->kappa N1 isomerization as part of an ECE mechanism is 3.9 s-1 at pH 3. The pH dependence of the acid-catalyzed hydrolysis of [(2AmPym kappa N1)(NH3)5Ru]2+ is determined.  相似文献   

5.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

6.
The novel mononuclear and dinuclear complexes [Ru(trpy)(bpy)(apc)][PF(6)] and [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2) (bpy = 2,2'-bipyridine, trpy = 2,2':6',2' '-terpyridine, apc(-) = 4-azo(phenylcyanamido)benzene, and adpc(2)(-) = 4,4'-azodi(phenylcyanamido)) were synthesized and characterized by (1)H NMR, UV-vis, and cyclic voltammetry. Crystallography showed that the dinuclear Ru(II) complex crystallizes from diethyl ether/acetonitrile solution as [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2).2(acetonitrile).2(diethyl ether). Crystal structure data are as follows: crystal system triclinic, space group P1, with a, b, and c = 12.480(2), 13.090(3) and 14.147(3) A, respectively, alpha, beta, and gamma = 79.792(3), 68.027(3), and 64.447(3) degrees, respectively, V = 1933.3(6) A(3), and Z = 1. The structure was refined to a final R factor of 0.0421. The mixed-valence complex with metal ions, separated by a through-space distance of 19.5 A, is a class III system, having the comproportionation constant K(c) = 1.3 x 10(13) and an intervalence band at 1920 nm (epsilon(max) = 10 000 M(-1) cm(-1)), in dimethylformamide solution. The results of this study strongly suggest that the bridging ligand adpc(2-) can mediate metal-metal coupling through both hole-transfer and electron-transfer superexchange mechanisms.  相似文献   

7.
The formation of mixed molybdenum-tellurium oxides MoTeO5, Mo2TeO8, Mo3TeO11, MoTe2O7 in the gas phase has been studied by mass spectrometry (MS) experiments at temperatures of about 938 K and studied theoretically by quantum chemical (QC) methods. Structural and thermodynamic data for the molecules was calculated. The mixed oxides MoTeO5, Mo2TeO8, Mo3TeO11 and MoTe2O7 in the gas phase have been reported for the first time. Experimental thermodynamic data have been determined by means of MS and confirmed theoretically by DFT and ab initio (MP2) calculations. Adiabatic ionisation potentials (IPs) were obtained experimentally and compared with theoretical vertical ionisation potentials. The following values are given: Δ(f)H(298)(0) (MoTeO5) = ?730.2 kJ mol(?1) (MS), Δ(f)H(298)(0) (MoTeO5) = ?735.4 kJ mol(?1) (DFT), ?717.3 kJ mol(?1) (MP2), S(298)(0) (MoTeO5) = 389.5 J mol(?1) K(?1) (DFT), c(p)(0)(T)(MoTeO5) = 141.71 + 13.54 × 10(?3)T ? 2.53 × 10(6)T(?2) J mol(?1) K(?1) (298 < T < 940 K) (DFT), Δ(f)H(298)(0) (Mo2TeO8) = ?1436.3 kJ mol(?1) (MS), Δ(f)H(298)(0) (Mo2TeO8) = ?1436.1 kJ mol(?1) (DFT), ?1455.9 kJ mol(?1) (MP2), S(298)(0) (Mo2TeO8) = 517.1 J mol(?1) K(?1) (DFT), c(p)(0)(T)(Mo2TeO8) = 228.64 + 24.15 × 10(?3)T ? 4.09 × 10(6)T(?2) J mol(?1) K(?1) (298 < T < 940 K) (DFT), Δ(f)H(298)(0) (Mo3TeO11) = ?2132.7 kJ mol(?1) (MS), Δ(f)H(298)(0) (Mo3TeO11) = ?2110.7 kJ mol(?1) (DFT), ?2163.2 kJ mol(?1) (MP2), S(298)(0) (Mo3TeO11) = 629.3 J mol(?1) K(?1) (DFT), c(p)(0)(T)(Mo3TeO11) = 316.40 + 34.10 × 10(?3)T ? 5.74 × 10(6)T(?2) J mol(?1) K(?1) (298 < T < 940 K) (DFT), Δ(f)H(298)(0) (MoTe2O7) = ?999.7 kJ mol(?1) (MS), Δ(f)H(298)(0) (MoTe2O7) = ?1002.7 kJ mol(?1) (DFT), ?1000.9 kJ mol(?1) (MP2), S(298)(0) (MoTe2O7) = 504.8 J mol(?1) K(?1) (DFT), c(p)(0)(T)(MoTe2O7) = 211.19 + 18.02 × 10(?3)T ? 3.53 × 10(6)T(?2) J mol(?1) K(?1) (298 < T < 940 K) (DFT), IP(MoTeO5) = 10.68 eV (DFT), IP(Mo2TeO8) = 10.4 ± 0.5 eV (MS), IP(Mo2TeO8) = 10.41 eV (DFT), IP(Mo3TeO11) = 10.7 ± 0.5 eV (MS), IP(Mo3TeO11) = 10.18 eV (DFT), IP(MoTe2O7) = 9.91 eV (DFT).  相似文献   

8.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

9.
In this paper, we describe the enantiospecific synthesis and the complete characterization of the two hexacoordinated ruthenium(II) monocations [Ru(bpy)(2)ppy](+) and [Ru(bpy)(2)quo](+) (bpy = 2,2'-bipyridine, ppy = phenylpyridine-H(+), quo = 8-hydroxyquinolate) in their enantiomeric Delta and Lambda forms. The corresponding enantiomeric excesses (ee's) are determined by (1)H NMR using pure Delta-Trisphat (tris(tetrachlorobenzenedialato)phosphate(V) anion) as a chiral (1)H NMR shift reagent. A complete (1)H and (13)C NMR study has been carried out on rac-[Ru(bpy)(2)ppy]PF(6) and rac-[Ru(bpy)(2)quo]PF(6). Additionally, the X-ray molecular structure of rac-[Ru(bpy)(2)quo]PF(6) is reported; this latter species crystallizes in the monoclinic C2/c space group (a = 22.079 A, b = 16.874 A, c = 17.533 A, alpha = 90 degrees, beta = 109.08 degrees, gamma = 90 degrees ).  相似文献   

10.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

11.
A series of mono- and bis(2-pyridyl)-arylmethanone ligands were prepared by utilizing the reaction between either bromobenzonitrile or dicyanobenzene and 2-lithiopyridine in either a 1:1 or a 2:1 mol ratio, respectively. They react with [Ru(bpy)2(EtOH)2][PF6]2 to yield the new complexes [N,O-PhC(O)(2-py)Ru(bpy)2][PF6]2 (6), [p-N,O-BrC6H4C-(O)(2-py)Ru(bpy)2][PF6]2 (7), [m-N,O-BrC6H4C(O)(2-py)Ru(bpy)2][PF6]2 (8), [p-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)]-[PF6]4 (9), and [m-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)][PF6]4 (10). The solid state structures of 6 and 7 show that the octahedral cations are arranged in sinusoidal chains by pi-pi stacking and CH-pi interactions between bipyridyl groups. Substitution of bromine for hydrogen at the para position of the aryl group in 7 causes the aryl group to become involved in pi-pi stacking interactions that organize the chains into a sheet structure. The complicated 1H and 13C NMR spectra of the complexes have been fully assigned using 2D methods. The optical spectra show two absorption maxima near 434 and 564 nm due to MLCT transitions. The compounds were found to be nonluminescent. Electrochemical data acquired for CH3CN solutions of the bimetallic derivatives indicate that there is no electronic communication between metal centers mediated either through space or through ligand orbitals. Crystallographic information: 6.0.5CH3CN is monoclinic, C2/c, a = 24.3474(11) A, b = 13.7721(6) A, c = 21.3184(10) A, beta = 103.9920(10) degrees, Z = 8; 7 is monoclinic, P2(1)/c, a = 10.6639(11) A, b = 23.690(3) A, c = 13.7634(14) A, beta = 91.440(2) degrees, Z = 4.  相似文献   

12.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

13.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

14.
Enantiopure dinuclear ruthenium polypyridyl complexes of the form [Ru(2)(LL)(4)L(1)](PF(6))(4) (LL = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); L(1)= C(25)H(20)N(4) a bis(pyridylimine) ligand containing a diphenylmethane spacer) have been synthesized using the chiral building blocks cis-[Ru(bpy)(2)(py)(2)](2+) and cis-[Ru(phen)(2)(py)(2)](2+). These dinuclear ruthenium complexes have been characterised using NMR, mass spectrometry, UV-visible absorbance, circular dichroism and linear dichroism. The compounds exhibit good photo and thermal stability. The extinction coefficient for the bpy complex at 478 nm is epsilon(478) = 15,700 mol(-1) cm(-1) dm(3) and for the phen complex is epsilon(478) = 24,900 mol(-1) cm(-1) dm(3). Both complexes have their longest wavelength (metal to ligand charge transfer) transition predominantly x/y (short axis)-polarised while the transitions at shorter wavelength are a mixture of x/y and z-polarisations, similar to both the copper helicate and iron triple helicate studied previously. Cytotoxicity studies reveal that the compounds are dramatically less active against cancer cell lines than the recently reported supramolecular cylinders prepared from the same bis(pyridylimine) ligand.  相似文献   

15.
A series of platinum(II) complexes of the type [Pt(NN)(pyB)2](NO3)2 (NN = bipy, phen; pyB = 3- or 4-pyridineboronic acid) were successfully prepared and fully characterised by 1D- and 2D-multinuclear NMR spectroscopy and ESI-MS. Using VT 1H NMR spectroscopy, rotational isomers for [Pt(NN)(3-pyB)2](NO3)2 were identified and the free energies of activation for rotation of 3-pyB about the Pt-N bond were determined to be DeltaG++310) = 69.2 +/- 0.1 kJ mol(-1) and DeltaG++(305) = 66.0 +/- 0.1 kJ mol(-1) for [Pt(bipy)(3-pyB)2](NO3)2 and [Pt(phen)(3-pyB)2](NO3)2, respectively. The 3- and 4-pyB ligands readily deboronate in boiling H2O to afford [Pt(NN)(py)2](NO3)2; the structure of [Pt(phen)(py)2](2+) (as its PF6- salt) was confirmed by X-ray crystallography. Preliminary thermal denaturation studies revealed only minimal interactions between [Pt(NN)(pyB)2](NO3)2 and calf-thymus DNA and is attributed to hydroxylation of the boronic acid groups at pH 7.4 to afford the corresponding zwitterionic boronate species. This was confirmed by means of variable pH 1H and 11B{1H} NMR spectroscopy.  相似文献   

16.
The compound [Ru(NO)(bpym)(terpy)](PF6)3, bpym = 2,2'-bipyrimidine and terpy = 2,2':6',2"-terpyridine, with a {RuNO}6 configuration (angle Ru-N-O 175.2(4) degrees ) was obtained from the structurally characterized precursor [Ru(NO2)(bpym)(terpy)](PF6), which shows bpym-centered reduction and metal-centered oxidation, as evident from EPR spectroscopy. The relatively labile [Ru(NO)(bpym)(terpy)](3+), which forms a structurally characterized acetonitrile substitution product [Ru(CH3CN)(bpym)(terpy)](PF6)2 upon treatment with CH3OH/CH3CN, is electrochemically reduced in three one-electron steps of which the third, leading to neutral [Ru(NO)(bpym)(terpy)], involves electrode adsorption. The first-two reduction processes cause shifts of nu(NO) from 1957 via 1665 to 1388 cm(-1), implying a predominantly NO-centered electron addition. UV-vis-NIR Spectroscopy shows long-wavelength ligand-to-ligand charge transfer absorptions for [Ru(II)(NO(-I))(bpym)(terpy)]+ in the visible region, whereas the paramagnetic intermediate [Ru(NO)(bpym)(terpy)](2+) exhibits no distinct absorption maximum above 309 nm. EPR spectroscopy of the latter at 9.5, 95, and 190 GHz shows the typical invariant pattern of the {RuNO}7 configuration; however, the high-frequency measurements at 4 and 10 K reveal a splitting of the g1 and g2 components, which is tentatively attributed to conformers resulting from the bending of RuNO. DFT calculations support the assignments of oxidation states and the general interpretation of the electronic structure.  相似文献   

17.
The aggregation tendency of complexes [Ru(eta6-cymene)(N,O)Cl]X [N,O = 2-benzoylpyridine (2-bzpy), 1, and 2-acetylpyridine (2-acpy), 2, X- = BPh4- or PF6-] has been studied by means of PGSE NMR experiments. It was found that complexes with PF6- as counterion are mainly present in CD2Cl2 as ion pairs at low concentration, as a mixture of ion triples and free anions at medium concentration and as ion quadruples at elevated concentration. 19F, 1H-HOESY NMR experiments revealed that in ion triples and ion quadruples two cationic Ru-units pair up. Consistently, in the solid-state structure of 1PF6, determined through X-ray single-crystal investigation, two cationic Ru-units are held together by an intermolecular pi-pi stacking interaction between the pyridyl rings. Complexes having BPh4- as counterion are only present in solution as even aggregates, namely ion pairs at low concentration and ion quadruples at elevated concentration. In such a case a counteranion bridges two cationic Ru-units as observed in the solid-state structure of 1BPh4. The reactivity of complexes 1-2 toward AgX salts has been investigated in different solvents. Bicationic [Ru(eta6-cymene)(N,O)(MeCN)]X2 (N,O = 2-bzpy, 3, and 2-acpy, 4) and [Ru(MeCN)4(N,O)]X2 (N,O = 2-bzpy, 5, and 2-acpy, 6) complexes were obtained by the reaction of 1 and 2 with AgX in the presence of three equivalents of acetonitrile or in acetonitrile, respectively. The reaction of 1 with AgPF6 in acetone afforded complex [Ru(eta6-cymene)(N,O,O)]PF6 (7, where N,O,O = 4-alcoxide-4-phenyl-4-(pyridin-2-yl)butan-2-one) from the C-C coupling of a deprotonated methyl group of the coordinated acetone and the C=O moiety of 2-bzpy ligand.  相似文献   

18.
Oscillation of the 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand between nonequivalent exchanging sites in [Pt(Me)(dmphen)(P(o-tolyl)3)]+ and phosphane rotation around the Pt-P bond take place at the same rate. Thus, this cationic complex behaves as a molecular gear, exhibiting a fascinating synchronism between two otherwise independent fluxional motions. The process (DeltaG(3330)(#) = 68.5 +/- 0.2 kJ mol(-1)) was found to be unaffected by (i) the nature of various counteranions (X = PF6- 1, SbF6- 2, CF3SO3- 3, BF4- 4, BArf- 5), (ii) the polarity or the electron-donor properties of the solvent and, (iii) the addition of weak nucleophiles. Restricted phosphane rotation around the Pt-P bond impedes free dmphen oscillation in a 14-electron three-coordinate T-shaped intermediate, containing eta1-coordinated dmphen, generated by easy Pt-N bond dissociation from [Pt(Me)(dmphen)(P(o-tolyl)3)]+. 1-5 undergo easy orthoplatination, leading to new [Pt(dmphen){CH2C6H4P(o-tolyl)2-kappaC,P}]X cyclometalated Pt(II) compounds (X = PF6- 1, SbF6- 2, CF3SO3- 3, BF4- 4, BArf- 5). The kinetics of the cyclometalation of 3 and 4 were followed in tetrachloroethane by both 1H NMR and spectrophotometric techniques (kobs = 1.7 x 10-4 s(-1) at 333 K, DeltaH = 59.3 +/- 3 kJ mol(-1), and DeltaS = -141 +/- 8 J K(-1) mol(-1)). Ring opening of dmphen is again a prerequisite for C-H bond activation, which takes place through a multistep oxidative-addition reductive-elimination pathway. The molecular structure of cyclometalated 10 shows a butterfly shape with two o-tolyl rings projected above and below the coordination plane. Variable-temperature 1H NMR spectra revealed hindered rotation around the P-Cipso(o-tolyl) bonds at rather mild temperatures (DeltaG(3330)(#) = 55.2 +/- 0.4 kJ mol(-1)). Dmphen oscillation results very slowly and is dependent on the nature of the counteranions, of the solvents, and is strongly accelerated by the presence of weak nucleophiles that act as catalysts, according to an associative mode of activation.  相似文献   

19.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

20.
Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号