首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold surface has been roughened by amalgamation and tested for self-assembled monolayer (SAM) formation and glucose oxidation. The rough gold undergoes structural changes at elevated temperatures, which lead to loss of activity for glucose oxidation and lower affinity for the self-assembly. The transformation of “active” into “inactive” surface can be prevented by SAM formation. The SAM modified gold exhibits high activity for glucose oxidation. These results are important especially for those studies, which use rough gold modified by SAM for enzyme immobilisation and further glucose oxidation, since the gold activity itself was so far neglected.  相似文献   

2.
The formation work of the condensed phase nucleus from the vapor on the surface of silver iodide at 273 K is calculated by the method of bicanonical statistical ensemble. The energy barrier of the formation of a nucleus of a monolayer on the surface is located in the region of extremely small sizes and its height does not exceed the energy of thermal motion k B T. Such a barrier cannot markedly decelerate the nucleation. A point crystal defect in the form of an extra ion on the surface qualitatively changes the pattern of the formation work curve: the minimum with a depth of about 100k B T corresponding to a thermodynamically stable nucleus appears on this curve. As the vapor pressure increases, “spots” of water molecules are formed and grow on the substrate surface around point crystal defects. These spots tend to coalesce and cover the entire surface as a monolayer; however, the high free energy barrier prevents the formation of further layers.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 561–572.Original Russian Text Copyright © 2005 by Shevkunov.  相似文献   

3.
The nucleation of water vapors on the surface of a fragment of silver iodide crystal is simulated by the Monte Carlo method under the conditions similar to natural conditions in a humid atmosphere. A stable monolayer island of water molecules with clearly pronounced features of hexagonal symmetry and low orientational order is formed at the initial stage, when the vapor pressure is still lower than the saturating pressure. The island readily grows over the surface and, in the unsaturated vapor, does not grow in the direction perpendicular to the surface. The formed monolayer represents a substrate for further growth of a condensed phase and, eventually, is responsible for the mechanism of nucleation on the crystal surface. Water molecules are held by the substrate mainly owing to the directional electrostatic interaction between the negatively charged oxygen atoms and positively charged silver ions. The interaction with iodine ions lowers the binding of the island (nucleus) and the substrate. A point defect in the form of an extra ion on the surface does not change the planar shape of the nucleus and virtually does not distort its hexagonal structure. Indirect experimental data supporting the formation of a water monolayer at the stage preceding nucleation, as well as the data of observations indicating the important role of defects on a crystal surface, are reported.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 548–560.Original Russian Text Copyright © 2005 by Shevkunov.  相似文献   

4.
The fundamental possibility to enlarge Pt nanoparticles in monolayer ensembles formed on polystyrene surfaces by the adsorption from hydrosol in solution of isopropanol and K2PtCl4 is demonstrated for the first time. The enlargement of “seeding” nanoparticles is performed after their preliminary incorporation (partial embedding) into the polymer surface layer by the annealing of a system within the range between “surface” and “bulk” glass transition temperatures of polystyrene. It is shown that a colloidal film of metallic platinum with a thickness up to 200 nm is formed in the course of enlargement and it is mechanically fixed in the polymer surface layer. Such a system exhibits, over a long time, high catalytic activity in the model reaction of methyl viologen reduction with hydrogen.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 398–403.Original Russian Text Copyright © 2005 by Rudoy, Sukhov, Dement’eva, Abkhalimov, Vereshchagina, Kartseva, Ershov.  相似文献   

5.
This paper is focused on the use of branched poly(ethyleneimine) (PEI) as reducing as well as stabilizing agent for the formation of gold nanoparticles in different media. The process of nanoparticle formation was investigated, in the absence of any other reducing agents, in microemulsion template phase in comparison to the nucleation process in aqueous polymer solution.

On the one hand, it was shown that the polyelectrolyte can be used for the controlled single-step synthesis and stabilization of gold nanoparticles via a nucleation reaction and particles with an average diameter of 7.1 nm can be produced.

On the other hand, it was demonstrated that the polymer can also act as reducing and stabilizing agent in much more complex systems, i.e. in water-in-oil (w/o) microemulsion droplets. The reverse microemulsion droplets of the quaternary system sodium dodecylsulfate (SDS)/toluene–pentanol (1:1)/water were successfully used for the synthesis of gold nanoparticles. The polymer, incorporated in the droplets, exhibits reducing properties, adsorbs on the surface of the nanoparticles and prevents their aggregation. Consequently, nanoparticles of 8.6 nm can be redispersed after solvent evaporation without a change of their size.

Nevertheless, the polymer acts already as a “template” during the formation of the nanoparticles in water and in microemulsion, so that an additional template effect of the microemulsion is not observed.

The particle formation for both methods is checked by means of UV–vis spectroscopy and the particle size and size distribution are investigated via dynamic light scattering and transmission electron microscopy (TEM).  相似文献   


6.
The presence of growing particles in a system leads to spatial inhomogencities in the vapor concentration. The effect of these spatial variations on the rate of formation of new particles by homogeneous nucleation is examined theoretically using a cell model. Results indicate that the presence of these inhomogeneities in systems both with and without initial aerosol has generally little effect on the final number concentration of particles following a nucleation “event.”  相似文献   

7.
Organized oleophobic monolayers of several long chain compounds and steroid derivatives produced on flat solid substrates by spontaneous adsorption from organic solutions are compared with Langmuir—Blodgett (LB) monolayers transferred on identical substrates from the water-air interface. Quantitative infrared ATR and polarized ATR spectroscopy, and wettability measurements are used to correlate the various films and to determine their molecular density and orientation, mode of film-to-surface binding, and other structural characteristics. Formation of oleophobic adsorbed monolayers on a model powder substrate—smooth glass microbeads—is also investigated. It is concluded that, irrespective of the mode of film-to-surface binding (ionic, covalent, or hydrogen bonding), and the nature of the substrate (Ge, Si, ZnSe, glass slides, glass microbeads), saturation of the adsorption leads in all studied systems to the formation of tightly packed and highly oriented monolayers, structurally equivalent to LB monolayers of same or similar compounds deposited on the bare surfaces of the respective substrates. These findings are interpreted in terms of a cooperative surface process leading to aggregation of molecules into a characteristic “monolayer phase.” Significant structural differences may develop in LB built-up films thicker than one monolayer. A mechanism for the formation of covalently bonded silane monolayers is proposed.  相似文献   

8.
Interaction of human serum albumin with poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO) monolayer at air/solution interface was studied by measuring surface pressure. The density of PEO chains in the monolayer was controlled using Langmuir trough barriers. The thickness of PS-b-PEO monolayer prior to and after albumin adsorption was computed from in situ surface plasmon resonance (SPR) measurements. Depending on the initial PEO surface density the surface pressure kinetics of albumin insertion displayed two different regimes: below the PEO “pancake-brush” transition albumin binding was initially very rapid and itself induced the “pancake-brush” transition in the monolayer, and above the “pancake-brush” transition where some albumin penetration into the free PS-b-PEO monolayer still occurred into the PEO “brush”. In the case of SPR-immobilized monolayer, more than 0.1 PEO chain/nm2 was required to inhibit albumin or ferritin adsorption. A half-reduction of albumin adsorption required approx. three-fold higher PEO surface density than the half-reduction of ferritin adsorption.  相似文献   

9.
We report a simple and rapid method for the deposition of amorphous silica onto a gold surface. The method is based on the ability of lysozyme to mediate the formation of silica nanoparticles. A monolayer of lysozyme is deposited via non-specific binding to gold. The lysozyme then mediates the self-assembled formation of a silica monolayer. The silica formation described herein occurs on a surface plasmon resonance (SPR) gold surface and is characterized by SPR spectroscopy. The silica layer significantly increases the surface area compared to the gold substrate and is directly compatible with a detection system. The maximum surface concentration of lysozyme was found to be a monolayer of 2.6 ng/mm(2) which allowed the deposition of a silica layer of a further 2 ng/mm(2). For additional surface functionalization, the silica was also demonstrated to be a suitable matrix for immobilization of biomolecules. The encapsulation of organophosphate hydrolase (OPH) was demonstrated as a model system. The silica forms at ambient conditions in a reaction that allows the encapsulation of enzymes directly during silica formation. OPH was successfully encapsulated within the silica particles and a detection limit for the substrate, paraoxon, using the surface-encapsulated enzyme was found to be 20 microM.  相似文献   

10.
Electrodeposition holds promise as a low cost, flexible room temperature technique for the production of II-VI compound semiconductors. Previous studies, however, have resulted in the production of polycrystalline deposits in every case. This paper describes a new method, developed in this laboratory, for depositing these materials epitaxially. The method involves the alternate deposition of the component elements a monolayer at a time. To limit deposition to a monolayer, underpotential deposition (UPD) is employed. UPD occurs because of the enhanced stability provided by bond formation between the II and VI elements, relative to formation of bulk elemental deposits. This method is the electrochemical equivalent of atomic layer epitaxy (ALE), and is thus referred to as “electrochemical atomic layer epitaxy” (ECALE). This paper describes the first example of the ECALE method, involving the thin-layer electrodeposition of CdTe on a Au polycrystalline electrode.  相似文献   

11.
This study reports on the electrochemical deposition of rhodium metal clusters on a polycrystalline gold electrode, modified with a monolayer of dodecanethiol through self-assembly from solution. The deposition process was investigated using cyclic voltammetry, chronoamperometry, and electrochemical quartz crystal microbalance. It is shown that the presence of the thiol monolayer drastically alters the nucleation and growth mechanism compared with the mechanism on the bare gold electrode. The small uncovered gold domains, located at the imperfections in the thiolate monolayer which are induced by the gold nanoroughness, act as nucleation sites for small rhodium clusters. At longer times, these clusters can outgrow the organic monolayer. The resulting surface morphology was characterized by scanning electron microscopy. Rhodium electrocrystallization on the bare gold substrate resulted in an ensemble of a very large amount of very small clusters that are difficult to distinguish from the gold roughness. In contrast, in the presence of a self-assembled monolayer (SAM) of dodecanethiol covalently attached to the gold electrode, the resulting deposit consisted of an ensemble of hemispherical particles. The size distribution of the rhodium particles obtained by using double step chronoamperometry was compared to the ones obtained with cyclic voltammetry and "classical" chronoamperometry. It is shown by X-ray photoelectron spectroscopy that the SAM is still present after rhodium deposition on the thiolate-covered gold substrate. Because the rhodium clusters are directly attached to the gold substrate and can thus easily be electrified, the resulting interface could be used as a composite electrode consisting of a random array of gold supported rhodium nano/microparticles separated from each other by an organic phase. On the other hand, it is shown that the SAM is easily removed by electrochemical oxidation without dissolving the rhodium clusters and, thus, leaving a different array of rhodium clusters on the gold surface compared with the topography obtained in the absence of the SAM. From this point of view, substrate modification with such "removable" organic monolayers was found to be an interesting tool to tune the nano- or microtopography of electrochemically deposited rhodium.  相似文献   

12.
Micro- and nanoscale combined hierarchical polymer structures were fabricated by UV-assisted capillary force lithography. The method is based on the sequential application of engraved polymer molds with a UV-curable resin of polyurethane acrylate (PUA) followed by surface treatment with a trichloro(1H,1H,2H,2H-perfluorooctyl) silane in vapor phase. Two distinct wetting states were observed on these dual-roughness structures. One is “Cassie–Wenzel state” where a water droplet forms heterogeneous contact with microstructures and homogeneous contact with nanostructures. The other is “Cassie–Cassie state” where a droplet makes heterogeneous contact both with micro- and nanostructures. A simple thermodynamic model was developed to explain static contact angle, hysteresis, and wetting transition on dual-roughness structures.  相似文献   

13.
We describe herein the properties at the air/water (A/W) interface of hydrophobically end-modified (HM) poly(2-isopropyl-2-oxazoline)s (PiPrOx) bearing an n-octadecyl chain on both termini (telechelic HM-PiPrOx) or on one chain end (semitelechelic HM-PiPrOx) for different subphase temperatures and spreading solvents using the Langmuir film balance technique. The polymer interfacial properties revealed by the πA isotherms depend markedly on the architecture and molecular weight of the polymer. On cold water subphases (14 °C), diffusion of PiPrOx chains onto water takes place for all polymers in the intermediate compressibility region (5 mN m−1). At higher subphase temperatures (36 and 48 °C), the HM-PiPrOx film exhibited remarkable stability with time. Brewster angle microscopy (BAM) imaging of the A/W interface showed that the polymer assembly was not uniform and that large domains formed, either isolated grains or pearl necklaces, depending on the polymer structure, the concentration of the spreading solution and the subphase temperature. The Langmuir films were transferred onto hydrophilic substrates (silica) by the Langmuir–Blodgett (LB) technique and onto hydrophobic substrates (gold) by Langmuir–Schaefer (LS) film deposition, resulting in the formation of adsorbed particles ranging in size from 200 to 500 nm, depending on the polymer architecture and the substrate temperature. The particles presented “Janus”-like hydrophilic/hydrophobic characteristics.  相似文献   

14.
The electrochemical behaviour of iron phthalocyanine (FeIIPc) films, supported on gold substrates, was studied in 3.5 M NaOH solution, using cyclic voltammetry and coupled “in situ” ESR and UV-visible spectroscopic techniques. Two types of electron transfer were observed in the potential range from −0.45 to −1.0 V vs. Hg/HgO. According to the “in situ” spectroscopy investigations, these two processes were assigned respectively to electron transfers involving first the ligand ring, and then the centre iron ion.  相似文献   

15.
Guo Yao  Yi Gu 《中国化学快报》2009,20(12):1510-1513
Four novel copoly(ester-imide)s based on 3,3',4,4'-biphenyltetracarboxylic dianhydride,bis(trimellitic acid anhydride) phenyl ester and di-p-aminophenyl ester of dicarboxylic acids were synthesized via two-step method in order to investigate whether two imide mesogenic units with different conformation and polarity could control the formation of LC-phase.Polarizes light microscopy(PLM) and differential scanning calorimetry(DSC) have shown that three polymers formed the nematic phase with thread schlieren...  相似文献   

16.
A model of the formation, detachment, and rise of a bubble from a submerged orifice is derived, based upon a study using a modified form of the Rayleigh–Plesset equation. Similar models have previously been proposed by Oguz and Prosperetti (1), Avramidis and Jiang (2), and also Chakraborty and Tuteja (3). We seek to re-examine these models and implement a number of additional physical features. In particular, we demonstrate the relative importance of the surface dilatational viscosity of surfactant added to the liquid in the growth and detachment of the bubble from the orifice. It is found that “large” surface dilatational viscosities significantly increase the time to detachment of the bubble. In addition, through a drastic reduction in the rate of radial expansion of the bubble in the early stages of development (given an initial condition on the radial velocity for “fast” bubble growth), the rise velocity of the bubble centroid at this time is greater with a large surface dilatational viscosity than when this property is neglected.  相似文献   

17.
The kinetic behaviour of a surface process involving the deposition of a two-dimensional surface film by a nucleation and growth mechanism is treated for the case of linear potential sweep control. Features which distinguish nucleation and growth in monolayer formation from random electrodeposition (Langmuir case) treated in previous papers are emphasized. Two main mechanisms are considered: one where the growth occurs from a fixed surface density of nuclei and the other where growth occurs from a potential-dependent density of nuclei. Computer simulations and some analytical derivations of the kinetic behaviour for these two cases are made and the characteristic kinetic features of the process are deduced, enabling the latter to be distinguished in terms of experimentally accessible criteria. The extent of reversibility of the processes can be usefully expressed in terms of a limiting sweep-rate parameter, s0, which is related to the rate constant for nucleation or the surface density of nuclei and the rate constant for growth.  相似文献   

18.
Palladium catalysts (0.125–0.5 wt.% Pd) supported by amine groups—functionalized gel-type resin (FCN) were studied in the hydrogenation of alkynes reagents, 2-butyne-1,4-diol and phenylacetylene. The catalysts were prepared by two routes. The first, “OAc” is based on the immobilization of Pd-precursor in the pre-swollen resin from THF solution of Pd(OAc)2, followed by chemical reduction of the Pd-centers. This method produces Pd particles of size in nano-scale. The second procedure, “aq” implies the deposition of Pd-species on dry resin beads using aqueous solution of PdCl2. Reduction of these Pd-species gives relatively large Pd particles, dominating are 30–50 nm in size. The SEM studies performed over the cross-section of catalysts grains showed location of Pd in outer shell of polymer beads in both “OAc” and “aq” catalysts; however, thinner layer of Pd appears in “aq” series catalysts. In the presence of all catalysts, prepared by “OAc” and “aq” methods the selectivity towards alkenes is high, above 90%. The catalysts of “aq’ series are much more active and more selective than “OAc” analogues giving selectivity to alkene ca. 94% at almost complete conversion of alkynes. Moreover, catalytic performance of “aq’ series catalyst is unchanged under recycling use. The catalyst was recovered and reused 4 times, maintaining its catalytic efficiency.  相似文献   

19.
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.  相似文献   

20.
We discovered a novel method to prepare a protein-based hydrogel, that is, a “Three-Dimensional Nanostructured Protein Hydrogel (3D NPH)”, which is composed of protein–polymer hybrid nanoparticles. In this study, we propose a novel protein microarray whose 3D NPH spots were prepared by dispensing a small volume of the solution of protein–polymer mixture on a substrate. The dispensed solution had a short time for cross-linking before its drying-up and the resulting 3D NPH had loosely cross-linked, thin spongy structure. Therefore, the reaction ratio between ligands and analytes was drastically improved in this system compared with the large volume system for Surface Plasmon Resonance (SPR) protein microarray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号