首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
In a preliminary report, we have demonstrated transfer of a flowing bolus enhanced in low magnetic fields (e.g., 0.33 T) with dynamic nuclear polarization (DNP), but monitored in a high magnetic field (4.7 T). The advantages of the high magnetic field monitoring approach include: 1) greater chemical shift dispersion, and 2) improved signal strength in comparison with static low field DNP experiments. In the present study, a model is developed to predict ultimate DNP enhancements (A) in this experiment for flow liquid/liquid intermolecular transfer (L2IT). L2IT1H and13C data is obtained for benzene and chloroform in order to test the validity of the model. The ultimate1H and13C DNP enhancements obtained for benzene/TEMPO are ?150 and ?220, respectively. For a chloroform/TEMPO (L2IT) sample, the ultimate enhancements are close to the1H dipolar (?330) and the13C scalar (+2660) limit, respectively. In the latter case, the observed13C DNP enhancement exceeds the thermal Boltzmann magnetization at 4.7 T by a factor of 21. For a 1-chlorobutane/TEMPO sample selective enhancements were observed at different sites in the molecule. For example, the C-1 carbon exhibits a large scalar enhancement, whereas, the other carbons exhibit dipolar enhancements. Data illustrating the importance of three-spin effects in13C DNP studies is also presented. Alternative methods of sample transfer from the low to high magnetic field are also discussed.  相似文献   

2.
Four Ib-type synthetic diamond crystals were studied by dynamic nuclear polarization (DNP)-enhanced high resolution solid state13C nuclear magnetic resonance (NMR) spectroscopy. The home built DNP magic-angle-spinning (MAS) NMR spectrometer operates at a field strength of 1.9 T and the highest DNP enhancement factor of synthetic diamonds came near to 103. Comparing with Ib-type natural diamonds, the13C NMR linewidths of synthetic diamonds in static spectra are broader. The13C spin-lattice relaxation time and DNP polarization time of synthetic diamond are shorter than those of Ib-type natural diamond. From the hyperfine structure of the DNP enhancement curve, four kinds of nitrogen-centred free radicals could be identified in synthetic diamond.  相似文献   

3.
For those organic compounds which lack free radicals, a doping approach named melting-liquid-nitrogen-quench was developed in order to perform dynamic nuclear polarization(DNP)-nuclear magnetic resonance experiments. By using this method, the 1H, 13C, 15N DNP enhancements were observed with free-radical-doped dibenzofuran and benzamide. The enhancement mechanism and relation between the concentration of unpaired electrons and the maximum DNP enhancement are discussed.  相似文献   

4.
Three chemical vapor deposited diamond films were studied by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state13C nuclear magnetic resonance (NMR) spectroscopy. Enhanced13C direct-polarization spectra of diamond films were obtained by irradiating the samples with microwaves at or near electron spin resonance Larmor frequency of carbon center free radicals. No NMR signal for sp2 hybridized carbons could be observed. From the curve of the DNP enhancement as a function of frequency, it is found that the dominant DNP mechanism is the solid-state effect. The13C cross-polarization spectrum, which is an evidence for existence of the proton defect in the lattice of diamond films, is much broader than the13C single pulse spectrum. The reason is discussed shortly.  相似文献   

5.
T. R. Eykyn  M. O. Leach 《Molecular physics》2013,111(13-14):1827-1832
Polarization transfer has become a commonplace technique for the enhancement of a variety of nuclei in high field nuclear magnetic resonance (NMR). In this paper the homonuclear Hartmann-Hahn method for polarization transfer is revisited and it is shown that a 90% transfer of polarization can be achieved experimentally between a pair of scalar coupled 13C nuclei in a sample of isotopically enriched glycine. This may show particular utility in the field of dynamic nuclear polarization (DNP) and could be used as an addendum to already established DNP techniques allowing the favourable enhancement to be ‘stored’ on long-lived nuclei and subsequently transferred to shorter-lived nuclei prior to observation.  相似文献   

6.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ∼17 have been obtained in two-dimensional 13C–13C chemical shift correlation spectra of the amino acid U–13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

7.
Dynamic nuclear polarization (DNP) transfers electron spin-polarization to nuclear spins in close proximity, increasing sensitivity by two-to-three orders of magnitude. This enables nuclear magnetic resonance (NMR) experiments on samples with low concentrations of analyte. The requirement of using cryogenic temperatures in DNP-enhanced solid-state NMR (ssNMR) experiments may impair the resolution and hence limit its broad application to biological systems. In this work, we introduce a “High-Temperature DNP” approach, which aims at increasing spectral resolution by performing experiments at temperatures of around 180?K instead of?~100?K. By utilizing the extraordinary enhancements obtained on deuterated proteins, still sufficiently large DNP enhancements of 11–18 are obtained for proton and carbon, respectively. We recorded high sensitivity 2D 13C–13C spectra in?~9?min with higher resolution than at 100?K, which has similar resolution to the one obtained at room temperature for some favorable residues.  相似文献   

8.
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth’s field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth’s magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring 14N nucleus via the hyperfine interaction. A high-quality 2D 19F–1H COSY spectrum acquired in the Earth’s magnetic field with DNP enhancement is presented and compared to simulation.  相似文献   

9.
Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of ?110 (14N TEMPOL) and ?165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about ?110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.  相似文献   

10.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

11.
We have performed liquid state (“Overhauser”) dynamic nuclear polarization (DNP) experiments at high magnetic field (9.2?T, corresponding to 260?GHz EPR and 400?MHz 1H-NMR resonance frequency) on solutions of pyruvate, lactate and alanine in water with TEMPOL nitroxide radicals as polarizing agent. We present experimental results showing DNP enhancement on metabolite methyl protons, varying for the different target metabolites. It is shown that the enhancements are achieved through direct coupling between the radicals and the target metabolites in solution, i.e., the effect is not mediated by the solvent water protons. The coupling factors between the TEMPOL radicals and the metabolites observed are a factor of 3–5 smaller compared to direct polarization transfer from TEMPOL to water protons.  相似文献   

12.
Photochemically induced dynamic nuclear polarization is observed in the two photosynthetic reaction centers of plants, photosystem I (PSI) and photosystem II (PSII) by13C magic-angle spinning nuclear magnetic resonance (NMR) at three different magnetic fields 17.6, 9.4, and 4.7 T. There is a significant difference in field dependence detected in the light-induced signal pattern of the two photosystems. For PSII the optimal NMR enhancement factor of about 5000 is observed at 4.7 T. On the other hand, the maximal light-induced signals of PSI are observed at 9.4 T.  相似文献   

13.
Cross polarization can provide significant enhancements with respect to direct polarization of low-γ nuclei such as 13C. Substantial gains in sample throughput (shorter polarization times) can be achieved by exploiting shorter build-up times τDNP(1H)?<?τDNP(13C). To polarize protons rather than low-γ nuclei, nitroxide radicals with broad ESR resonances such as TEMPO are more appropriate than Trityl and similar carbon-based radicals that have narrow lines. With TEMPO as polarizing agent, the main Dynamic Nuclear Polarization (DNP) mechanism is thermal mixing (TM). Cross polarization makes it possible to attain higher polarization levels at 2.2?K than one can obtain with direct DNP of low-γ nuclei with TEMPO at 1.2?K, thus avoiding complex cryogenic technology.  相似文献   

14.
Dynamic nuclear polarization (DNP) is investigated in the liquid state using a model system of Frémy's salt dissolved in water. Nuclear magnetic resonance signal enhancements at 0.34 and 3.4?T of the bulk water protons are recorded as a function of the irradiation time and the polarizer concentration. The build-up rates are consistent with the T(1n) of the observed water protons at room temperature (for 9?GHz/0.34?T) and for about 50?±?10?°C at 94?GHz/3.4?T. At 94?GHz/3.4?T, we observe in our setup a maximal enhancement of -50 at 25?mM polarizer concentration. The use of Frémy's salt allows the determination of the saturation factors at 94?GHz by pulsed ELDOR experiments. The results are well consistent with the Overhauser DNP mechanism and indicate that higher enhancements at this intermediate frequency require higher sample temperatures.  相似文献   

15.
We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ~45% polarization for [1-(13)C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ~13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature.  相似文献   

16.
The nitroxide-based 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical is widely used in 13C dynamic nuclear polarization (DNP) due to its relatively low cost, commercial availability, and effectiveness as polarizing agent. While a large number of TEMPO derivatives are available commercially, so far, only few have been tested for use in 13C DNP. In this study, we have tested and evaluated the 13C hyperpolarization efficiency of eight derivatives of TEMPO free radical with different side arms in the 4-position. In general, these TEMPO derivatives were found to have slight variations in efficiency as polarizing agents for DNP of 3 M [1-13C] acetate in 1:1 v/v ethanol:water at 3.35 T and 1.2 K. X-band electron paramagnetic resonance (EPR) spectroscopy revealed no significant differences in the spectral features among these TEMPO derivatives. 2H enrichment of the ethanol:water glassing matrix resulted in further improvement of the solid-state 13C DNP signals by factor of 2 to 2.5-fold with respect to the 13C DNP signal of non-deuterated DNP samples. These results suggest an interaction between the nuclear Zeeman reservoirs and the electron dipolar system via the thermal mixing mechanism.  相似文献   

17.
The yttrium complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(1′-13C-acetic acid) [13C]DOTA was synthesized. Fast dissolution dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) studies revealed that the 89Y, 13C, and 15N nuclei present in the complex could be co-polarized at the same optimum microwave irradiation frequency. The liquid-state spin–lattice relaxation time T 1 of these nuclei were found to be reasonably long to preserve some or most of the DNP-enhanced polarization after dissolution. The hyperpolarized 13C and 89Y NMR signals were optimized in different glassing mixtures. The overall results are discussed in light of the thermal mixing model of DNP.  相似文献   

18.
We describe a low-temperature thermodynamic model for dynamic nuclear polarization (DNP) via continuous-wave partial saturation of electron spin resonance (ESR) lines that are both homogeneously and inhomogeneously broadened. It is a variant of a reasoning proposed by Borghini, which in turn used Redfield’s thermodynamic treatment of saturation. Our variant is furthermore based on Provotorov’s insight that under partial saturation of a coupled-spin system two distinct spin temperatures should appear in a thermodynamical theory. We apply our model to DNP results obtained at a temperature of 1.2?K and in magnetic fields of 3.35 and 5?T on 1-13C labeled sodium acetate dissolved in a frozen D2O/ethanol-d6 solution doped with the free radical TEMPO.  相似文献   

19.
Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging – provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on 13C nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum 1H signals by about 600, which is significantly less than in optimized low-γ liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 106. Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based 1H NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments.  相似文献   

20.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large 1H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16°C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26°C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)−1, in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is −0.0187. It is shown that these results agree very well with an analysis where the electron–dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26°C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号