首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In this work we provide an Aleksandrov–Bakelman–Pucci type estimate for a certain class of fully nonlinear elliptic integro-differential equations, the proof of which relies on an appropriate generalization of the convex envelope to a nonlocal, fractional-order setting and on the use of Riesz potentials to interpret second derivatives as fractional order operators. This result applies to a family of equations involving some nondegenerate kernels and, as a consequence, provides some new regularity results for previously untreated equations. Furthermore, this result also gives a new comparison theorem for viscosity solutions of such equations which depends only on the L and L n norms of the right-hand side, in contrast to previous comparison results which utilize the continuity of the right-hand side for their conclusions. These results appear to be new, even for the linear case of the relevant equations.  相似文献   

3.
In this paper, we use the Laplace–Laplace transformation and complex analysis to give a systematical scheme to determine the proper boundary conditions for initial-boundary value problems in the half space and to construct exponentially sharp pointwise structures of the boundary data. Here, we have used the boundary value problems with the Robin boundary conditions for the convection heat equations and the linearized compressible Navier–Stokes equation with a constant convection velocity to demonstrate this scheme.  相似文献   

4.
The Navier–Stokes–Fourier system describing the motion of a compressible, viscous and heat conducting fluid is known to possess global-in-time weak solutions for any initial data of finite energy. We show that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists. In particular, strong solutions are unique within the class of weak solutions.  相似文献   

5.
We derive the vortex dynamics for the nonlinear Maxwell–Klein–Gordon equation with the Ginzburg–Landau type potential. In particular, we consider the case when the external electric fields are of order \({O( | \log \epsilon |^{\frac{1}{2}})}\). We study the convergence of the space–time Jacobian \({\partial_t \psi \cdot i \nabla \psi}\) as an interaction term between the vortices and electric fields. An explicit form of the limiting vector measure is shown.  相似文献   

6.
We study global asymptotic behavior of Poisson–Nernst–Planck (PNP) systems for flow of two ion species through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previously studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous as the radius of the channel tends to zero.  相似文献   

7.
A temperature-dependent viscodamage model is proposed and coupled to the temperature-dependent Schapery’s nonlinear viscoelasticity and the temperature-dependent Perzyna’s viscoplasticity constitutive model presented in Abu Al-Rub et al., 2009, Huang et al., in press in order to model the nonlinear constitutive behavior of asphalt mixes. The thermo-viscodamage model is formulated to be a function of temperature, total effective strain, and the damage driving force which is expressed in terms of the stress invariants of the effective stress in the undamaged configuration. This expression for the damage force allows for the distinction between the influence of compression and extension loading conditions on damage nucleation and growth. A systematic procedure for obtaining the thermo-viscodamage model parameters using creep test data at different stress levels and different temperatures is presented. The recursive-iterative and radial return algorithms are used for the numerical implementation of the nonlinear viscoelasticity and viscoplasticity models, respectively, whereas the viscodamage model is implemented using the effective (undamaged) configuration concept. Numerical algorithms are implemented in the well-known finite element code Abaqus via the user material subroutine UMAT. The model is then calibrated and verified by comparing the model predictions with experimental data that include creep-recovery, creep, and uniaxial constant strain rate tests over a range of temperatures, stress levels, and strain rates. It is shown that the presented constitutive model is capable of predicting the nonlinear behavior of asphaltic mixes under different loading conditions.  相似文献   

8.
A material model for concrete is proposed here within the framework of a thermodynamically consistent elasto-plasticity–damage theory. Two anisotropic damage tensors and two damage criteria are adopted to describe the distinctive degradation of the mechanical properties of concrete under tensile and compressive loadings. The total stress tensor is decomposed into tensile and compressive components in order to accommodate the need for the above mentioned damage tensors. The plasticity yield criterion presented in this work accounts for the spectral decomposition of the stress tensor and allows multiple hardening rules to be used. This plastic yield criterion is used simultaneously with the damage criteria to simulate the physical behavior of concrete. Non-associative flow rule for the plastic strains is used to account for the dilatancy of concrete as a frictional material. The thermodynamic Helmholtz free energy concept is used to consistently derive dissipation potentials for damage and plasticity and to allow evolution laws for different hardening parameters. The evolution of the two damage tensors is accounted for through the use of fracture-energy-based continuum damage mechanics. An expression is derived for the damage–elasto-plastic tangent operator. The theoretical framework of the model is described here while the implementation of this model will be discussed in a subsequent paper.  相似文献   

9.
Metal nanoparticles have been used as antibacterial agents widely, and the combined use of enzymes and metal nanoparticles promotes antibacterial activity, achieving a synergistic effect. Additionally, enzymes decrease the amounts of metals and increase biocompatibility, thereby reducing toxicity of metals. However, the efficiency of enzymes is hindered when coupled with metals, which causes deactivation in the function of enzymes. How can a balance be struck between metals and enzymes? Although the antibacterial mechanism of metal nanoparticles is relatively clear, how enzyme–metal nanocomposites work against bacteria is not conclusive. Here, we describe several examples on the synthesis of enzyme–metal nanocomposites via co-immobilization or in situ reduction and summarize how enzyme–metal nanocomposites combat microorganisms.  相似文献   

10.
The Cahn–Hilliard–Navier–Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier–Stokes equations suitably coupled with a nonlocal Cahn–Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn–Hilliard–Navier–Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball’s approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn–Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies a dissipative estimate. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.  相似文献   

11.
This paper is devoted to proving some features of the non associated flow rule such as a softening phenomenon in the stress–strain curve and the decrease of limit load. Based on the non-associated Drucker–Prager model, the analysis is investigated by means of a soil specimen subjected to traction and compression actions on its edges. To obtain the stress–strain curve, a semi-analytical approach provides an incremental relation between stresses and strains. The plastic limit load is calculated analytically by direct static and kinematic methods. The kinematic one is determined on the basis of the bipotential concept.  相似文献   

12.
Beginning with the first mode as the initial condition, long-term evolutions of gravity waves in shallow water are simulated based on the full nonlinear Boussinesq model. Evident recurrence is observed in long basins with appropriate initial amplitudes. Equipartition can be obtained in the case of a long basin, large initial amplitude or a long evolution time. Well-defined solitary waves are present during the recurrence stage and completely lost at the equipartition stage. The transition from regular to chaotic motion is conjectured to be related to the ratio of the dispersion and nonlinearity of the initial condition. For short basins with small initial amplitudes, nonlinearity is much smaller than dispersion, energy transfer is weak, and no recurrence can be observed. If dispersion and nonlinearity are chosen to be the same order in the initial condition, recurrence clearly emerges. However, if nonlinearity is chosen to be larger than dispersion, recurrence is absent and the system reaches equipartition rapidly.  相似文献   

13.
We investigate the boundary condition between a free fluid and a porous medium, where the interface between the two is given as a periodically curved structure. Using a coordinate transformation, we can employ methods of periodic homogenisation to derive effective boundary conditions for the transformed system. In the porous medium, the fluid velocity is given by Darcy's law with a non-constant permeability matrix. In tangential direction as well as for the pressure, a jump appears. Its magnitudes can be calculated with the help of a generalised boundary layer function. The results can be interpreted as a generalised law of Beavers and Joseph for curved interfaces.  相似文献   

14.
《Comptes Rendus Mecanique》2017,345(5):353-361
For linear composite conductors, it is known that the celebrated Hashin–Shtrikman bounds can be recovered by the translation method. We investigate whether the same conclusion extends to nonlinear composites in two dimensions. To that purpose, we consider two-phase composites with perfectly conducting inclusions. In that case, explicit expressions of the various bounds considered can be obtained. The bounds provided by the translation method are compared with the nonlinear Hashin–Shtrikman-type bounds delivered by the Talbot–Willis (1985) [2] and the Ponte Castañeda (1991) [3] procedures.  相似文献   

15.
Cong Xu  Binbin Liu 《Particuology》2012,10(3):283-291
Static-type samplers are required for sampling corrosive, toxic, high-temperature, or radioactive liquid–solid fluids. We have designed a compact reverse flow diverter pumping system for transferring liquid–solid mixtures. In accordance with the Venturi principle, an acceptable volume of liquid–solid fluid is automatically collected into a sampling bottle. The effects of sampling needle sizes, sectional area of the T-section, solid concentration, and liquid viscosity on the performance of fluidic samplers were experimentally investigated. The sample volume increased upon the reduction of the sampling needle length and the increase of the sectional area of the T-section, but decreased with the increase of solid concentration and liquid viscosity. Unbiased samples of acceptable volume were produced by the proposed fluidic sampler, even at 10.21 mPa s liquid viscosity, 35 wt% solid concentration, and 6.74 m sampling height.  相似文献   

16.
We present a unified constitutive model capable of predicting the steady shear rheology of polystyrene (PS)–nanoparticle melt composites, where particles can be rods, platelets, or any geometry in between, as validated against experimental measurements. The composite model incorporates the rheological properties of the polymer matrix, the aspect ratio and characteristic length scale of the nanoparticles, the orientation of the nanoparticles, hydrodynamic particle–particle interactions, the interaction between the nanoparticles and the polymer, and flow conditions of melt processing. We demonstrate that our constitutive model predicts both the steady rheology of PS–carbon nanofiber composites and the steady rheology of PS–nanoclay composites. Along with presenting the model and validating it against experimental measurements, we evaluate three different closure approximations, an important constitutive assumption in a kinetic theory model, for both polymer–nanoparticle systems. Both composite systems are most accurately modeled with a quadratic closure approximation.  相似文献   

17.
Peng  Li-Juan 《Nonlinear dynamics》2021,105(1):707-716

Under investigation is a completely generalized Hirota–Satsuma–Ito equation in (2 + 1)-dimensional. Multiple lump solutions are obtained based on three test functions, including 1-, 2- and 3-order lump solutions. Subsequently, the interaction between lump wave and solitary waves, and the interaction solution between lump wave and periodic wave are studied by using the bilinear form. Final, the stability and phase velocity are investigated. In order to analyze the dynamic behavior of these solutions, some 3D plots and contour plots are given by Mathematica.

  相似文献   

18.
An unprecedented dual avoidance–arrival problem is addressed for uncertain mechanical systems. The concerned system uncertainty is (possibly fast) time-varying but within an unknown bound. The objective is to design a control to simultaneously guarantee two seemingly opposite system performance: avoidance (with respect to a region) and arrival (with respect to another region). This is formulated as an approximate constraint-following control problem, in which formulation, the desired constraint is creatively divided into two categories as the avoidance constraint and the arrival constraint. An adaptive robust control is then put forward under the consideration of the system uncertainty. It is proved that, with the proposed control input, the avoidance constraint is completely followed and the arrival constraint is closely followed; hence, the dual avoidance–arrival problem is carried out.  相似文献   

19.
20.
In this article, we describe some aspects of the diffuse interface modelling of incompressible flows, composed of three immiscible components, without phase change. In the diffuse interface methods, system evolution is driven by the minimisation of a free energy. The originality of our approach, derived from the Cahn–Hilliard model, comes from the particular form of energy we proposed in Boyer and Lapuerta (M2AN Math Model Numer Anal, 40:653–987,2006), which, among other interesting properties, ensures consistency with the two-phase model. The modelling of three-phase flows is further completed by coupling the Cahn–Hilliard system and the Navier–Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space paying attention to the fact that most of the main properties of the original model (volume conservation and energy estimate) have to be maintained at the discrete level. An adaptive refinement method is finally used to obtain an accurate resolution of very thin moving internal layers, while limiting the total number of cells in the grids all along the simulation. Different numerical results are given, from the validation case of the lens spreading between two phases (contact angles and pressure jumps), to the study of mass transfer through a liquid/liquid interface crossed by a single rising gas bubble. The numerical applications are performed with large ratio between densities and viscosities and three different surface tensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号