首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (25) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.  相似文献   

2.
Aspergillus fumigatus N2 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest xylanase (91.9 U/mL) and CMCase (5.61 U/mL) activity was produced when 1% barley straw was used as the carbon source. The optimum pH and temperature for xylanase activity were 6.0 and 65 °C, respectively. CMCase revealed maximum activity at pH 4.0 and in the range of 65 °C. The FPase was optimally active at pH 5.0 and 60 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that multiple enzymes were secreted into the fermentation supernatant. Five bands of proteins with xylanase activity and four bands of proteins with endoglucanase were observed in the zymogram gel. The crude enzymes were used in the barley straw saccharification; an additive effect was observed when the commercial cellulase was added as supplement.  相似文献   

3.
The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one beta-glucosidase (beta-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that beta-glu x may be a homodimer. For p-nitrophenyl beta-d-glucopyranoside hydrolysis, apparent Km and Vmax values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55-60 degrees C and pH 5.0, respectively. beta-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. beta-Glu x possesses strong transglucosylation activity in comparison with commercially available beta-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50 degrees C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 3C nuclear magnetic resonance spectroscopy.  相似文献   

4.
The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T1/2 was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0. These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.  相似文献   

5.
Enzyme stability studies in case of Sclerotium rolfsii UV-8 mutant have been investigated under the conditions used for saccharification of cellulose (50 degrees C, pH 4.5, 48 h). Avicelase (measure of exoenzymes) and xylanase were found to be less stable than CMCase (endoglucanase) and beta-glucosidase. Merthiolate (and other Hg compounds) added as a biocide, inactivated avicelase and xylanase about 60-70%. Of the antibiotics tested, tetracycline, chloramphenicol, and streptomycin sulfate were found suitable as an additive in cellulose hydrolysis system. The optimum hydrolysis of alkali-treated (AT)-rice straw, AT-bagasse, Solka Floc SW40, and Avicel P.H.101 was observed under shaking conditions at pH 4.5, 50 degrees C in CO2 atmosphere. It is suggested, all the studied parameters could be used for the evaluation of mutant strains.  相似文献   

6.
An extracellular xylanase produced by a Mexican Aspergillus strain was purified and characterized. Aspergillus sp. FP-470 was able to grow and produce extracellular xylanases on birchwood xylan, oat spelt xylan, wheat straw, and corncob, with higher production observed on corncob. The strain also produced enzymes with cellulase, amylase, and pectinase activities on this substrate. A 22-kDa endoxylanase was purified 30-fold. Optimum temperature and pH were 60 degrees C and 5.5, respectively, and isoelectric point was 9.0. The enzyme has good stability from pH 5.0 to 10.0, retaining >80% of its original activity within this range. Half-lives of 150 min at 50 degrees C and 6.5 min at 60 degrees C were found. K(m) and activation energy values were 3.8 mg/mL and 26 kJ/mol, respectively, using birchwood xylan as substrate. The enzyme showed a higher affinity for 4-O-methyl-D-glucuronoxylan with a K(m) of 1.9 mg/mL. The enzyme displayed no activity toward other polysaccharides, including cellulose. Baking trials were conducted using the crude filtrate and purified enzyme. Addition of both preparations improved bread volume. However, addition of purified endoxylanase caused a 30% increase in volume over the crude extract.  相似文献   

7.
Trichoderma atroviride 676 was studied to evaluate its efficiency in the production of some lignocellulolytic enzymes, using lignocellulosic residual biomass. Best results were obtained when 3.0 % (w/v) untreated sugarcane bagasse was used (61.3 U mL?1 for xylanase, 1.9 U mL?1 for endoglucanase, 0.25 U mL?1 for FPase, and 0.17 U mL?1 for β-glucosidase) after 3–4 days fermentation. The maximal enzymatic activity for endoglucanase, FPase, and xylanase were observed at 50–60 °C and pH?4.0–5.0, whereas thermal stability at 50 °C (CMCase and FPase) or 40 °C (xylanase) was obtained after 8 h. Zymograms have shown two bands of 104 and 200 kDa for endoglucanases and three bands for xylanase (23, 36, and 55.7 kDa). The results obtained with T. atroviride strain 676 were comparable to those obtained with the cellulolytic strain Trichoderma reesei RUT-C30, indicating, in the studied conditions, its great potential for biotechnological application, especially lignocellulose biomass hydrolysis.  相似文献   

8.
This study is related to the isolation of fungal strain for xylanase production using agro-industrial residues. Forty fungal strains with xylanolytic potential were isolated by using xylan agar plates and quantitatively screened in solid-state fermentation. Of all the tested isolates, the strain showing highest ability to produce xylanase was assigned the code Aspergillus niger LCBT-14. For the enhanced production of the enzyme, five different fermentation media were evaluated. Out of all media, M4 containing wheat bran gave maximum enzyme production. Effect of different variables including incubation time, temperature, pH, carbon and nitrogen sources has been investigated. The optimum enzyme production was obtained after 72 h at 30°C and pH 4. Glucose as a carbon source while ammonium sulphate and yeast extract as nitrogen sources gave maximum xylanase production (946 U/mL/min). This study was successful in producing xylanase by A. niger LCBT-14 economically by utilising cheap indigenous substrate.  相似文献   

9.
The activity of β-glucosidase (βG), total cellulase (FPase) and endoglucanase (CMCase), produced by Aspergillus japonicus URM5620, was studied on solid-state fermentation using castor bean meal as substrate. The effect of the substrate amount, initial moisture, pH, and temperature on cellulase production was studied using a full factorial design (2(4)). The maximum βG, FPase, and CMCase activity was 88.3, 953.4, and 191.6 U/g dry substrate, respectively. The best enzyme activities for all three enzymes were obtained at the same conditions with 5.0 g of substrate, initial moisture 15% at 25 °C and pH 6.0 with 120 h of fermentation. The optimum activity for FPase and CMCase was found at pH 3.0 at an optimum temperature of 50 °C for FPase and of 55 °C for CMCase. The cellulases were stable in the range of pH 3.0-10.0 at 50 °C temperature. The enzyme production optimization demonstrated clearly the impact of the process parameters on the yield of the cellulolytic enzymes.  相似文献   

10.
A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.  相似文献   

11.
Xylanase production byPenicillium janthinellum using 10–100 mM of 2,2-dimethylsuccinate (DMS) buffer, in a range of pH 4.5-6.0 was studied. The enzyme activity was enhanced using oat xylan as the carbon source. Under these conditions a culture produced 1.14 Μmol/ min (11.4 U/mL or 84.4 U/mg) of Β-xylanase after 5 d of growth in a 10-mM buffer solution at pH 4.5. Protease was absent in the DMS buffer except when 100 mM phosphate buffer at pH 6.0 was used (4 U/mL). Β-Xylosidase was only found at a pH of 4.5 in all the buffer concentrations. At a 50 mM DMS buffer concentration at pH 4.5 Β- xylanases were induced by both oat and birch xylans, having a greater effect with oat spelt xylans. Electrophoretic analyses showed that the birchwood xylan induction exhibited different proteins profiles. No Β-xylosidase or Β- glucosidase was induced until d 5. The Β-xylanases were rapidly inactivated at 50‡C, however, birch xylanase appeared to be more stable than oat xylanase. Using oat xylan as an inductor, theΒ-xylosidase andΒ-glucosidase were 85 and 91 U/L, respectively, on d 7. The xylanase produced by induction from sugar cane bagasse hydrolyzate was used for pulp biobleaching. A 20% decrease on the Kappa value in Kraft pulp using the culture extract was obtained. These selective growth conditions led us to modulate the xylanase production for pulp delignification.  相似文献   

12.
The ginsenoside-beta-glucosidase that hydrolyzes the beta-(1-->2)-glucoside of the ginsenoside Rg3 sugar moiety to ginsenoside Rh2 was isolated from the ginseng root, and the enzyme was purified and characterized. The enzyme was purified to one spot in SDS polyacrylamide gel electrophoresis, and its molecular weight was about 59 kDa. The optimum temperature of the ginsenoside-beta-glucosidase was 60 degrees C, and the optimum pH was 5.0. Ca2+ ion had positive effect on ginsenoside-beta-glucosidase, while Cu2+ had negative effect on it. The ginsenoside-beta-glucosidase may be a special beta-glucosidase that is different from the original exocellulase such as beta-glucosidase (EC 3.2.1.21).  相似文献   

13.
The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K m and V max values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0–10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75°C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50°C and 60°C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.  相似文献   

14.
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.  相似文献   

15.
Aspergillus niger NCIM 1207 produces high levels of extracellular beta-glucosidase and xylanase activities in submerged fermentation. Among the nitrogen sources, ammonium sulfate, ammonium dihydrogen orthophosphate, and corn-steep liquor were the best for the production of cellulolytic enzymes by A. niger. The optimum pH and temperature for cellulase production were 3.0-5.5 and 28 degrees C, respectively. The cellulase complex of this strain was found to undergo catabolite repression in the presence of high concentrations of glucose. Glycerol at all concentrations caused catabolite repression of cellulase production. The addition of glucose (up to 1% concentration) enhanced the production of cellulolytic enzymes, but a higher concentration of glucose effected the pronounced repression of enzymes. Generally the growth on glucose- or glycerol-containing medium was accompanied by a sudden drop in the pH of the fermentation medium to 2.0.  相似文献   

16.
Brazil is known for its great potential for production of renewable resources such as agro-industrial residues. These residues can be used as alternative sources of new products. Meanwhile, solid-state fermentation, with its advantages of energy conservation and pollution reduction, has been identified as a process of great potential for the production of bioactive compounds, especially enzymes. In the present work, a 2(3) factorial design was used to evaluate the effects of pH, temperature and moisture on the production of phytase and xylanase by Lichtheimia blakesleeana URM 5604 through the fermentation of citrus pulp. Statistical analyses of the results showed that the only the pH influenced the production of these enzymes, with the best phytase production (264.68 U/g) ocurring at pH 6.0, 34 °C, initial moisture 50%, after 48 hours of culture. The best conditions for xylanase production (397.82 U/g) were fermentation for 120 hours at pH 4.0, 26 °C and initial moisture of 70%. The best parameters for the simultaneous production of phytase (226.92 U/g) and xylanase (215.59 U/g) were determined to be initial moisture of 50%, pH 6.0, 26 °C, and 48 hours of fermentation.  相似文献   

17.
In this study, different enzyme preparations available from Novozymes were assessed for their efficiency to hydrolyze lignocellulosic materials. The enzyme mixture was evaluated on a pretreated cellulose-rich material, and steam-exploded barley straw pretreated under different temperatures (190, 200, and 210 degrees C, respectively) in order to produce fermentable sugars. Results show that xylanase supplementation improves initial cellulose hydrolysis effectiveness of water-insoluble solid fraction from all steam-exploded barley straw samples, regardless of the xylan content of substrate. The mixture constituted by cellulase: beta-glucosidase: endoxylanase of the new kit for lignocellulose conversion at a ratio 10:1:5% ([v/w], enzyme [E]/substrate [S]) provides the highest increment of cellulose conversion in barley straw pretreated at 210 degrees C, for 10 min.  相似文献   

18.
A heat-stable enzyme was isolated from the cellulase complex of a thermophilic strain of the micromyceteThielavia terrestris. The purified enzyme exhibited both endoglucanase and xylanase activities and had a mol mass of 69,000 Daltons and an isoelectric point of 6.4. When the cells were grown at 48°C, the initial activity of the purified enzyme using carboxymethylcellulose as a substrate was 150 nkat/mg and the Michaelis constant was 6.6 g/L. The heat stability of the enzyme was high, losing only 20% of the initial activity after a 6-h incubation at 65 °C. When cultures were grown on microcrystalline cellulose and xylose was added after 48 h of growth, endoglucanase and xylanase activities were more than doubled. Similar increases in these activities were observed by growing the cultures on straw.  相似文献   

19.
Pleurotus sajor-caju grows efficiently and degrades all the components present in lignocellulosic residues. Production of cellulase and xylanase enzymes in submerged culture and during solid state cultivation has been studied. An initial pH of 5.0 was found to be optimal for the production of cellulase in shake flasks; this was attained in about 6–8 d in a medium containing either cellulose or rice straw as the sole source of carbon. On the cellulose medium, the maximum filter paper activity attained was 0.15 IU/mL in 7 d whereas the endoglycanase activity of 1.0 IU/mL, xylanase activity of 1.55 IU/mL, and Β-glucosidase activity of 0.57 IU/mL were acheived after 9 d fermentation. The reducing sugars were absent in the culture medium. The cellulases (filter paper activity and endoglucanases) were most active at pH 5.0 and 45‡C. Xylanase had maximum activity at pH 4.8 and 45‡C, and Β-glucosidase at pH 5.5 and 40‡C. In shake cultures,P. sajor-caju produced dispersed suspension of short mycelial threads and various sizes of pellets. The profile and extent of enzyme biosynthesis during submerged cultivation on rice straw was found to be of the same nature as obtained on cellulose. During solid state cultivation ofP. sajor-caju on rice straw beds for 36 d, the elaboration of enzyme activities did not appear to follow any definite pattern. However, filter paper activity, which is representative of cellulase action in hydrolyzing cellulose, remained more or less constant during the period of about the first 20 d of cultivation after the appearance of fruit bodies on the surface of rice straw beds. All the activities attained their minimum values after 23 d of cultivation, during which approximately 1 kg of fresh fruit bodies had been harvested. The total fruit bodies harvested till 36th days were approx. 1.1 kg. ThroughT. sajor-caju elaborates cellulase and xylanse extracellularly, the activity values were not as high as those of other cellulase producers such asTrichoderma reesei.  相似文献   

20.
In this study, with combined carboxymethyl cellulose agar plate, xylan agar plate and filter paper hydrolysis assay, a novel cellulase and xylanase-producing strain identified as Bacillus sp. was isolated. Using lactose as the only carbon source, a complete and balanced lignocellulolytic enzyme system containing at least endoglucanase (9.6 U/ml), exoglucanase (0.8 U/ml), Fpase (1.4 U/ml), xylanase (3.8 U/ml) and β-glucosidase (1.2 U/ml) was produced. Interestingly, a zymogram of the crude culture supernatant displayed a multifunctional lignocellulolytic enzyme system including at least four bonds with both endoglucanase activity and xylanase activity at 21.2, 23.8, 28.9 and 31.2 kDa, respectively, indicating that these enzymes might be bifunctional. More gratifyingly, according to the binding affinity analysis and scanning electron microscopy, the crude enzyme complex produced by strain BS-5 was capable of hydrolyzing not only pure insoluble polysaccharides, but also agricultural residues such as corn cob. At 5% substrate concentration and 20 FPU/g enzyme loading, the reducing sugar was 350.8 mg/g of alkali-pretreated corn cob after 72 h enzymatic hydrolysis. These results suggested that this strain could be a good candidate for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail for the saccharification of lignocellulosic biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号