首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A naphthalenediimide derivative (1) was designed and synthesized as a halogen bonding (XB) donor that is capable of forming complementary XBs with 2,2-dipyridine or 2,2-bipyrimidine acceptor. The XB interactions in the complexes (1/2,2-dipyridine and 1/2,2-bipyrimidine) significantly improved their OFET performance relative to the devices based on pure 1, with the average electron mobility increased more than doubled.  相似文献   

2.
Contact resistance at the interface between metal electrodes and semiconductors can significantly limit the performance of organic field-effect transistors,leading to a distinct voltage drop at the interface.Here,we demonstrate enhanced performance of n-channel field-effect transistors based on solution-grown C_(60) single-crystalline ribbons by introducing an interlayer of a conjugated polyelectrolyte(CPE) composed of poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylamnionium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide(PFN~+Br~-).The PFN~+Br~-interlayer greatly improves the charge injection.Consequently,the electron mobility is promoted up to 5.60 cm~2V~(-1) s~(-1) and the threshold voltage decreased dramatically with the minimum of4.90 V.  相似文献   

3.
采用Stille缩聚,合成了3个异靛蓝并[7,6-g]异靛蓝(DIID)和乙烯单元交替排列的共轭聚合物P0F、P2F和P4F,三者在DIID单元中分别含0、2和4个氟原子(F).3个聚合物均具有良好的平面性,前线分子轨道几乎在整个共轭骨架上离域.它们均具有宽的吸收光谱,吸收范围在400~1000 nm,光学带隙约为1.25 eV;随着氟原子数目的增加,聚合物的最高占有分子轨道(HOMO)和最低空分子轨道(LUMO)能级依次下降0.1~0.2 eV.以这3个聚合物作为活性层,制备了顶栅-底接触型有机场效应晶体管器件,随着氟原子数目的增加,聚合物的传输性质由双极传输变为n型传输.P0F和P2F是双极传输型聚合物,空穴迁移率(μ_h)分别达到0.11和0.30 cm~2 V~(-1) s~(-1),电子迁移率(me)分别达到0.22和1.19 cm~2 V~(-1) s~(-1).P4F是n型聚合物,me达到0.18 cm~2 V~(-1) s~(-1).  相似文献   

4.
Zhang  Yu  Yang  Shuyuan  Zhu  Xiaoting  Zhai  Fei  Feng  Yiyu  Feng  Wei  Zhang  Xiaotao  Li  Rongjin  Hu  Wenping 《中国科学:化学(英文版)》2020,63(7):973-979
Doping is a critically important strategy to modulate the properties of organic semiconductors(OSCs) to improve their optoelectrical performances. Conventional bulk doping involves the incorporation of foreign molecular species(i.e., dopants) into the lattice of the host OSCs, and thus disrupts the packing of the host OSCs and induces structural defects, which tends to reduce the mobility and(or) the on/off ratio in organic field-effect transistors(OFETs). In this article, we report a highly efficient and highly controllable surface doping strategy utilizing 2D molecular crystals(2DMCs) as dopants to boost the mobility and to modulate the threshold voltage of OFETs. The amount of dopants, i.e., the thickness of the 2DMCs, is controlled at monolayer precision, enabling fine tuning of the electrical properties of the OSCs at unprecedented accuracy. As a result, a prominent increase of the average mobility from 1.31 to 4.71 cm~2 V~(-1) s~(-1) and a substantial reduction of the threshold voltage from -18.5 to -1.8 V are observed. Meanwhile, high on/off ratios of up to 10~8 are retained.  相似文献   

5.
Sheng  Wanle  Zheng  Yu-Qing  Wu  Qinghua  Chen  Kangkang  Li  Mao  Jiao  Lijuan  Hao  Erhong  Wang  Jie-Yu  Pei  Jian 《中国科学:化学(英文版)》2020,63(9):1240-1245
Azadipyrromethene derived polycyclic aromatic complexes(HBPs) containing thirteen fused rings have been synthesized,which show highly selective intense absorption in the near infrared spectrum(NIR) region with high photo-and thermo-stability.The periphery alkoxy and alkyl substituents greatly affect their molecular packing structures in thin films and their thin film transistor performances. With the simple changes of the alkyl substituents, the packing structures changed from discrete-grain with H-aggregation type absorption to lamellar packing with J-aggregation type absorption, and the semiconducting properties were modulated from p-type to interesting ambipolar-type in solution-processed organic field effect transistors(OFETs) with hole and electron mobilities reaching to 0.42 and 0.17 cm~2 V~(-1) s~(-1), respectively.  相似文献   

6.
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.  相似文献   

7.
Energy-transfer reaction from metastable CO(a~3П) molecule to CN radical has been studied in a room-temperature flow reactor. The CN (B-X, △v=0, ±1, ±2) violet emission bands were obtained. The △v=0 sequence of CN(B) were analyzed by computer simulation. The vibrational temperature is 3400 K. By using the reference reaction CO(a)+NO, the formation rate constant of CN(B) has been measured, k_(CN)(B)=1.1×10~(-11) cm~3·molecule~(-1)·s~(-1).  相似文献   

8.
Liu  Danqing  Xiao  Xu  He  Zikai  Tan  Jingjuan  Wang  Lei  Shan  Bowen  Miao  Qian 《中国科学:化学(英文版)》2020,63(9):1221-1229
Polymorphism of organic semiconductor films is of key importance for the performance of organic thin film transistors(OTFTs).Herein, we demonstrate that the polymorphism of solution-processed organic semiconductors in thin film transistors can be controlled by finely tuning the surface nanostructures of substrates with self-assembled monolayers(SAMs). It is found that the SAMs of 12-cyclohexyldodecylphosphonic acid(CDPA) and 12-phenyldodecylphosphonic acid(Ph DPA) induce different polymorphs in the dip-coated films of 2-dodecyl[1]benzothieno[3,2-b][1]benzothiophene(BTBT-C12). The film of BTBT-C12 on CDPA exhibits field effect mobility as high as 28.1 cm~2 V~(-1) s~(-1) for holes, which is higher than that of BTBT-C12 on Ph DPA by three times. The high mobility of BTBT-C12 on CDPA is attributable to the highly oriented films of BTBT-C12 with a reduced in-plane lattice and high molecular alignment.  相似文献   

9.
近年来,有机场效应晶体管(OFETs)由于在柔性器件和可穿戴电子学中的潜在应用受到了学术界和工业界的普遍关注,尤其是以聚合物半导体材料构筑的晶体管性能得到了快速的发展.如何设计合成用于OFETs的高性能聚合物半导体材料,一直是我们的追求目标.然而,分子结构对迁移率的影响仍缺少系统的比较.本文综述了近年来国内外新型聚合物材料的最新进展.我们按照材料的种类以及载流子的传输类型进行了分类,对高性能聚合物材料的发展过程、材料的设计思路以及相应的FETs性能进行了系统地归纳总结.通过研究分子及分子聚集态结构与器件性能之间的关系,希望为以后设计合成新型的高性能的聚合物材料提供有益的借鉴和指导.  相似文献   

10.
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene ( CNDE ), 3-fluoro-1,4-dicyano-butadiene ( CNFDE ), and 2,3-difluoro-1,4-dicyano-butadiene ( CNDFDE ), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (−3.03–4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole ( DPP ), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V−1 s−1. Hence, CNDE , CNFDE , and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.  相似文献   

11.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   

12.
Compared with the dominant aromatic conjugated materials, photovoltaic applications of their quinoidal counterparts featuring rigid and planar molecular structures have long been unexplored despite their narrow optical bandgaps, large absorption coefficients, and excellent charge‐transport properties. The design and synthesis of dithienoindophenine derivatives (DTIPs) by stabilizing the quinoidal resonance of the parent indophenine framework is reported here. Compared with the ambipolar indophenine derivatives, DTIPs with the fixed molecular configuration are found to be p‐type semiconductors exhibiting excellent unipolar hole mobilities up to 0.22 cm2 V?1 s?1, which is one order of magnitude higher than that of the parent IP‐O and is even comparable to that of QQT(CN)4‐based single‐crystal field‐effect transistors (FET). DTIPs exhibit better photovoltaic performance than their aromatic bithieno[3,4‐b]thiophene (BTT) counterparts with an optimal power‐conversion efficiency (PCE) of 4.07 %.  相似文献   

13.
窦建民  李大成  高希珂 《高分子科学》2017,35(11):1342-1351
Two copolymers of P1 and P2 comprising benzothiadiazole, 1,4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1,2,5,6-naphthalenediimide.Their thermal, optical,electrochemical as well as charge transport properties were studied. Bottom-gate top-contact organic field-effect transistors(OFETs) measurements of P1 and P2 thin films showed different charge transport behaviors. P1 displayed pure electron transport behaviors in OFETs with electron mobility up to 10~(-3 )cm~2·V~(-1)·s~(-1), while P2 exhibited hole transport features. The molecular structure analysis revealed that the structure of P1 has the acceptor-linker-acceptor′(A-L-A′) characteristic, and P2 possesses the donor-linker-acceptor(D-L-A) structure feature. The results demonstrate that different molecular structures lead them to have distinct charge transport behaviors. In particular, the first pure electron transport copolymer in OFETs based on 1,2,5,6-naphthalenediimide is achieved.  相似文献   

14.
Solution-processable, electronegative, π-conjugated systems containing dicyanomethylene-substituted cyclopenta[b]thiophene were synthesized as potential active materials for air-stable n-type organic field-effect transistors (OFETs). Electrochemical measurements revealed that these compounds exhibited electrochemical stability and that the lowest unoccupied molecular orbital (LUMO) had an energy level less than -4.0 eV. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements were performed, and the value of intradomain electron mobility was determined to be as high as 0.1 cm(2) V(-1) s(-1) . The OFETs were fabricated by spin-coating thin films of the compounds as an active layer. The electron mobility of the OFETs was 3.5×10(-3) cm(2) V(-1) s(-1) in vacuum. Furthermore, electron mobility of the same order of magnitude and stable characteristics were obtained under air-exposed conditions. X-ray diffraction measurements of the spin-coated thin films revealed the difference of molecular arrangements depending on the inner conjugated units. Atomic force microscopy measurements of crystalline-structured films exhibited the formation of grains. The accomplishment of air-stability was attributed to the combined effect of the low-lying LUMO energy level and the molecular arrangements in the solid state, avoiding both the quenching of electron carriers and the intrusion of oxygen and/or moisture.  相似文献   

15.
用放电流动-共振荧光方法(DF-RF)研究SO_2+OH+M反应。讨论了壁反应, 扩散和副反应对速率常数测定的影响, 确定该反应在298 K下氩和氮气氛中反应比速的数据分别是(1.5±0.32)×10~(-31)cm~6molec~(-2)s~(-1)和(3.6±0.79)×10~(-31)cm~6molec~(-2)s~(-1)。  相似文献   

16.
The rate constants of eleven hydrocarbons and fluorocarbons with CN (V″=0, 1) at 300 K have been measured by using Laser Induced Fluorescence(LIF) method For the saturated hydrocarbons, the rate constants are changed from (5.6±0.3)×10~(-13) for CH_4 to (2.3±0.2)×10~(-10)cm~3 molecu~(-1).s~(-1) for C_7H_(16). The rate constants of the reaction of CN with alkenes and alkynes are close to the gas kinetic rate in spite of the structure of the molecules.The rate constants and mechanism of CN with the saturated hydrocarbons, H_2 and CH_3OH can be explained satisfactorily by the long distance attractive potential. The reaction of CN with alkenes and alkynes can only proceed through the addition into π bond. The influence of vibrational energy on the reaction rate was not found in the reactions of CN radical with hydrocarbon compounds.  相似文献   

17.
对Fe(Ⅱ/Ⅲ)离子在Nafion膜中的电荷传输以及在溶液扩散层中的传质过程进行了理论上的分析, 利用小幅度阶跃电位作为激励信号的阻抗测量法测定了该体系的阻抗并求出了Fe(Ⅱ/Ⅲ)离子在膜中的扩散系数和标准速度常数。同时讨论了电极电位和支持电解质浓度对体系阻抗的影响。实验的结果与理论推导的结果相一致。  相似文献   

18.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

19.
设计并合成了一类新的可用于有机场效应晶体管(OFET)的聚合物半导体材料聚(茚并芴-三苯胺)(pIFTPA1~4), 通过核磁共振谱和凝胶渗透色谱等对聚合物进行了表征, 同时对其场效应薄膜晶体管性能进行了测试. 结果表明, 这些聚合物形成了无定形半导体膜, 在空气中稳定, 其载流子迁移率远高于聚三苯胺(pTPA)类材料, 其中pIFTPA1载流子迁移率高达4×10-2 cm2/(V·s), 开关比为106.  相似文献   

20.
We report the synthesis, characterization, and application of a novel series of diketopyrrolopyrrole (DPP)-containing quinoidal small molecules as highly efficient n-type organic semiconductors in thin film transistors (TFTs). The first two representatives of these species exhibit maximum electron mobility up to 0.55 cm(2) V(-1) s(-1) with current on/current off (I(on)/I(off)) values of 10(6) for 1 by vapor evaporation, and 0.35 cm(2) V(-1) s(-1) with I(on)/I(off) values of 10(5)-10(6) for 2 by solution process in air, which is the first demonstration of DPP-based small molecules offering only electron transport characteristics in TFT devices. The results indicate that incorporation of a DPP moiety to construct quinoidal architecture is an effective approach to enhance the charge-transport capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号