首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李保华  马燕  黄蕾 《化学通报》2013,(2):124-131
扫描电化学显微镜(SECM)以其极高的空间分辨率、操作简单、测试样品更接近实际应用情况等特点,近年来逐渐成为生物样品分析中的重要工具,在研究细胞形貌、氧化还原活性、细胞膜上活性位以及跨细胞膜的物质传递方面具有优异的性能。本文介绍了扫描电化学显微镜的工作原理及其在细胞分析、酶分析、DNA分析、抗体抗原分析及微修饰等方面的应用,并展望了该技术未来的发展方向。  相似文献   

2.
作为一种扫描探针技术,扫描电化学显微镜(SECM)在金属防腐、材料表征、生物医学和新能源技术等领域的研究中扮演着重要角色。本文简要介绍了SECM的基本工作原理和常用的两种工作模式:反馈模式和收集/产生模式;综述了SECM在太阳能电池和太阳光解水制氢两个光电能源研究领域的应用进展,同时结合课题组的工作基础,特别是近期利用SECM筛选合适金属离子掺杂改性WO3光阳极的工作,对SECM在筛选半导体电极材料方面的应用特点进行了实例展示介绍,最后简要总结了SECM在光电能源研究领域的发展及方向。  相似文献   

3.
对扫描电化学显微镜(Scanning Electrochemical Microscope,SECM)的发展及其在界面电化学中的研究应用进行了评述。介绍了SECM的工作原理以及常用的操作模式,并对SECM在液/液界面、固/液界面等方面的应用进行了总结。  相似文献   

4.
金属腐蚀是一种典型的界面电化学反应过程,在金属腐蚀过程中形成的阳极和阴极活性区会导致金属和溶液界面微区的离子浓度发生变化,进而影响金属腐蚀过程的进行.扫描电化学显微镜(scanning electrochemical microscopy, SECM)作为一种扫描探针技术,不但能够表征金属微区腐蚀的物理形貌变化,而且可以记录样品微区的电化学腐蚀过程并探究腐蚀机理,因此在金属腐蚀与防护领域起着重要作用.本综述从回顾我国资深科学家在SECM技术引入中国后所做的与金属腐蚀与防护相关的初始性科学研究入手,首先简要描述了SECM的组成和在金属腐蚀与防护研究领域所应用到的工作模式,进而系统总结评述了我国科研人员近5年利用SECM在金属腐蚀与防护研究方面所作的贡献,最后对SECM在金属腐蚀与防护研究领域面临的挑战进行展望.  相似文献   

5.
田晓春  李祎頔  潘琴  赵峰 《分析化学》2021,49(6):858-866
微生物是自然界中广泛存在的生命体,它们通过呼吸代谢转化碳水化合物并产生能量的过程与电子转移密切相关,在元素的生物地球化学循环与物质能量转化过程中发挥着关键作用.因此,微生物电化学的原理及其应用近年来备受关注.电化学及其联用技术能够从电子转移层面揭示微生物/非生物界面物质和能量转化机制,是直接、有效的分析手段.其中,扫描...  相似文献   

6.
能源和环境问题成为制约未来可持续发展的关键问题之一,因此,针对不同电催化反应设计电催化剂变得越来越重要.电催化剂因其能量效率高、制备简单和易操作等优点,而应用于可再生能源的相关反应(如水分解和人工光合作用)中.明确不同反应电催化剂的设计原理,深入理解其在相关反应中的催化机理,可进一步优化催化剂性能.本文综述了扫描电化学显微镜(SECM)应用于电催化反应的历程、关键方法以及一些代表性的工作,阐明了电催化剂的工作机理以推进电催化剂的设计.本文还介绍了为提高SECM的空间分辨率而尝试的纳米尺寸电极方面的新进展,分享了纳米电极在以前研究无法涉及的单一催化实体方面的应用.  相似文献   

7.
本文较详细地介绍了扫描电化学显微镜技术的近期进展,引用参考文献77篇。  相似文献   

8.
扫描电化学显微镜及其最新进展   总被引:3,自引:0,他引:3  
邵元华 《分析化学》1999,27(11):1348-1355
对扫描电化学显微镜技术的基本原理,仪器设备,最新的研究进展和发展展望进行了评述。  相似文献   

9.
在电化学界面,电催化过程通常包括电子转移、吸附和脱附、静电相互作用、溶剂化及去溶剂化等多步过程,深入理解电催化反应机理极具挑战性.对纳米结构电化学界面(电极)处电催化过程的深入理解十分有助于阐明电催化反应机理和设计高性能电催化剂材料.电催化活性通常与电催化剂表面局域化的活性位点密切有关.在反应条件下,电催化反应过程的研究极大依赖于高分辨表征技术.经典的宏观电化学表征方法仅可以提供不同界面位点的平均信息,很难分辨一些特殊结构位点(如缺陷、晶界、边缘位点)的相关重要电化学信息.原位电化学扫描探针显微镜技术,包括电化学扫描隧道显微镜(EC-STM)、电化学原子力显微镜(EC-AFM)、扫描电化学显微镜(SECM)及扫描电化学池显微镜(SECCM),能够在纳米及原子尺度研究电催化反应过程,弥补了宏观表征方法的不足,为探究构效关系和解析电催化反应机理提供了机遇.本文介绍了各种扫描显微技术的基本原理、特点及优劣势,并且概述了各项技术在电催化领域研究的重大进展.EC-STM和EC-AFM能够原位表征电催化过程中的纳米尺度表面结构演变及吸附/脱附过程,但无法直接测量局部电化学活性(法拉第电流).通过S...  相似文献   

10.
王康  魏辉  夏兴华 《化学学报》2004,62(14):1339-1343,J005
利用扫描电化学显微镜 (SECM)将微探针定位于宏观金盘基底电极的扩散层内 .通过向基底电极施加适当电位以氧化消除电活性干扰物质 (如抗坏血酸 ) ,提高探针电极检测过氧化氢的选择性 .基于此方法 ,系统研究了探针 -金基底电极间距和电极电位对铂微探针检测过氧化氢选择性的影响 .结果表明 ,当探针 -基底电极间距为 2 2 .6μm ,金基底电极和铂探针电极电位分别为 0 4V和 0 5V时 ,探针电极检测过氧化氢不受抗坏血酸 ( 0 0 5mmol·L-1)的干扰 .此时 ,过氧化氢检测的线性范围为 :4× 10 -5~ 1× 10 -3 mol·L-1.基于实验结果 ,提出了在微型化电化学器件制备过程中设计互相靠近的双工作电极 ,利用电化学法消除电活性干扰物以提高检测选择性的新方法 .  相似文献   

11.
Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd2+-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd2+ in varying concentrations. It is experimentally observed that 50 and 100 μM Cd2+ caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd2+ concentration. The Cd2+ was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd2+ stress is realized by the methodology presented.  相似文献   

12.
Scanning electrochemical microscopy is a family of techniques that probes the local electrochemical surface environments with micrometer- and nanometer-scale space resolution and sub-picoampere chemical sensitivity. A recent growing trend uses these probes to investigate surface systems related to lithium-ion batteries, yielding a prodigious amount of new information. In this review, we give an overview of the recent progress on the scanning electrochemical microscopy and related techniques’ breakthroughs on lithium-ion battery electrodes research.  相似文献   

13.
Single-cell analysis is important for understanding fundamental biological processes and mechanisms. Scanning electrochemical microscopy and scanning ion conductance microscopy as two kinds of scanning probe microscopy, with high temporal and spatial resolutions as well as in situ and noninvasive characterization capabilities, emerge as strong tools for single-cell analysis. In this review, we introduce the latest advances of scanning electrochemical microscopy and scanning ion conductance microscopy for single-cell analysis, including characterizations of cell morphology dynamics, membrane properties and mechanics, and monitoring cell surface charge, extracellular pH, and intracellular substances.  相似文献   

14.
水凝胶微孔阵列是细胞培养的新型基板软材料,其微孔形貌对细胞的行为产生直接的影响.但传统水凝胶微孔阵列形貌的表征手段缺乏在水溶液中原位和可逆表征的能力.本文以水溶液中的氧气为还原电对,应用扫描电化学显微镜(SECM)对水溶液中的聚乙二醇二甲基丙烯酸酯水凝胶微孔阵列的形貌进行了原位表征,得到了水凝胶微孔阵列表面的二维孔径和三维形貌信息,开发出采用SECM对水凝胶微孔阵列形貌进行原位、可逆、无损表征及提供三维形貌信息的新方法.  相似文献   

15.
Lanlan Zhu  Wenrui Jin 《Talanta》2008,77(2):804-808
Scanning electrochemical microscopy (SECM) is a powerful tool to examine the respiratory activity of living cells. However, in SECM measurements of cell respiratory activity, the signal recorded usually also includes the signal corresponding to the cell topography. Therefore, measurements of cell respiratory activity using conventional SECM techniques are not accurate. In the present work, we develop a method for accurate measurement of the respiratory activity of single living cells using SECM. First, cells are immobilized on a glass substrate modified with collagen. Then, a Pt ultramicroelectrode tip of SECM held at −0.50 V is scanned along the central line across a living cell and a SECM scan curve, i.e., the relationship of the tip current versus the displacement (the first scan curve) is recorded with a negative peak. The peak current ip on this first scan curve is composed of ip1, which corresponds to the cell respiratory activity and ip2, which corresponds to the cell topography. In order to isolate the ip2 component, the cell is killed by exposing it to 1.0 × 10−3 mol/L KCN for 10 min. The tip is then scanned again with the same trace over the dead cell, and a second SECM scan curve is recorded. Noting that the topography of the dead cell is the same as that of the living cell, this second scan curve with a negative peak corresponds now only to the cell topography. Thus, ip2 is obtained from the second SECM scan curve. Finally, ip1 corresponding to the respiratory activity of the living cell can be accurately calculated using ip1 = ip − ip2. This method can be used to monitor real-time change in the respiratory activity of single cells after exposing them to KBr, NaN3 and KCN.  相似文献   

16.
A carbon ceramic electrode (CCE) modified with the redox probe—decamethylferrocene solution in hydrophobic organic solvent—2-nitrophenyloctyl ether and immersed into an aqueous solution was studied by scanning electrochemical microscopy (SECM). After the electrochemical oxidation of decamethylferrocene, its cations were detected near the electrode surface in the aqueous phase. This indicates that some fraction of the redox-active cations electrochemically produced in the organic phase is transferred across the liquid/liquid interface. They are reduced at the SECM tip and form a solid deposit. The amount of deposited decamethylferrocene was estimated by the anodic reaction at the tip. It is affected by the substrate–tip distance, deposition time, and electrolyte concentration. The SECM images of unmodified and modified CCEs are consistent with their heterogeneous structure.  相似文献   

17.
Micro- and nanoscale surface modification using scanning probe microscopy techniques in combination with electrochemically induced surface structuring provides a maskless in situ fabrication strategy enabling deposition or etching of three-dimensional nanostructures. This current opinion article focuses on scanning electrochemical probe microscopy techniques highlighting recent progress in nanoscale 3D surface modification along with a spotlight on approaches of practical relevance.  相似文献   

18.
Scanning electrochemical microscopy (SECM) has been performed in the restricted space of nanolitre droplets with a robust and easy-to-handle coaxial electrode assembly centring a Pt microdisk in a circular Ag electrode. Straightforward and reproducible fabrication of the specially designed probe tips was achieved by using Tollens reaction to chemically deposit a uniform and well-adhering layer of silver on the body of a glass-insulated Pt microdisk electrode. The suitability of the novel dual-electrode SECM tip for measurement in small volumes was evaluated by imaging an array of four Pt band microelectrodes in 500 nL electrolyte.  相似文献   

19.
Scanning electrochemical microscopy (SECM) and scanning chemiluminescence microscopy (SCLM) were used for imaging an enzyme chip with spatially-addressed spots for glucose oxidase (GOD) and uricase microspots. For the SECM imaging, hydrogen peroxide generated from the GOD and/or uricase spots was directly oxidized at the tip microelectrode in a solution containing glucose and/or uric acid (electrochemical (EC) detection). For the SCLM imaging, a tapered glass capillary (i.d. of 1∼2 μm) filled with luminol and horseradish peroxidase (HRP) was used as the scanning probe for generating the chemiluminescence (CL). The inner solution was injected from the capillary tip at 78 pl s−1 while scanning above the enzyme-immobilized chip. The CL generated when the capillary tip was scanned above the enzyme spots was detected using a photon-counter (CL detection). Two-dimensional mapping of the oxidation current and photon-counting intensity against the tip position affords images of which their contrast reflects the activity of the immobilized GOD and uricase. For both the EC and CL detections, the signal responses were plotted as a function of the glucose and uric acid concentrations in solution. The sensitivities for the EC and CL detection were found to be comparable.  相似文献   

20.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号