首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments ( 9-AGNR/cGNR ). The synthesis involves a controlled Suzuki–Miyaura catalyst-transfer polymerization (SCTP) between 2-(6′-bromo-4,4′′-ditetradecyl-[1,1′:2′,1′′-terphenyl]-3′-yl) boronic ester ( M1 ) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester ( M2 ), followed by the Scholl reaction of the obtained block copolymer ( poly-M1/M2 ) with controlled Mn (18 kDa) and narrow Đ (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).  相似文献   

2.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   

3.
Scanning tunneling microscope (STM) images of isolated molecules of dimethyl disulfide, (CH(3)S)(2), adsorbed on the Cu(111) surface were successfully obtained at a sample temperature of 4.7 K. A (CH(3)S)(2) molecule appears as an elliptic protrusion in the STM images. From density functional theory calculation, it was suggested that the bright part in the protrusion corresponds to the molecular orbital which is widely spread around H atoms in each CH(3) group in the (CH(3)S)(2) molecule. The STM images revealed that the molecules have a total of six equivalent adsorption orientations on Cu(111), which are given by the combination of three equivalent adsorption sites and two conformational isomers for each adsorption site.  相似文献   

4.
The thermally induced cyclodehydrogenation reaction of 6,6′‐bipentacene precursors on Au(111) yields peripentacene stabilized by surface interactions with the underlying metallic substrate. STM and atomic‐resolution non‐contact AFM imaging reveal rectangular flakes of nanographene featuring parallel pairs of zig‐zag and armchair edges resulting from the lateral fusion of two pentacene subunits. The synthesis of a novel molecular precursor 6,6′‐bipentacene, itself a synthetic target of interest for optical and electronic applications, is also reported. The scalable synthetic strategy promises to afford access to a structurally diverse class of extended periacenes and related polycyclic aromatic hydrocarbons as advanced materials for electronic, spintronic, optical, and magnetic devices.  相似文献   

5.
Self-assembled monolayers (SAMs) of 4,4'-terphenyl-substituted alkanethiols C6H5(C6H4)2(CH2)n-SH (TPn, n = 1-6) on Au (111) substrates were studied using scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy (IRRAS). When the SAMs were prepared at room temperature (RT, 298 K), TPn films (except TP2) exhibit an odd-even effect regarding both molecular orientation and packing density. For all investigated films, STM data reveals the presence of a large degree of lateral order. In the case of odd-numbered TPns, the films revealed a (2 square root(3) x square root(3))R30 degree molecular arrangement. For the even-numbered TP4 and TP6 SAMs, a c(5 square root(3) x 3) rectangular unit cell was found. The packing density for the even-numbered TPn SAMs is 25% lower than that for the odd-numbered TPn SAMs. When the SAMs were prepared at 333 K, the even-numbered SAMs were found to form structures with a significantly lower packing density. In the case of TP2, instead of the (2 square root(3) x square root(3))R30 degree structure formed at room temperature, a c(5 square root(3) x 3) structure was observed. For TP6 SAMs, the room-temperature c(5 square root(3) x 3) structure was replaced by a (6 square root(3) x 2 square root(3))R30 degree structure.  相似文献   

6.
Adsorption of two forms, molecule and radical, of amino acid L-cysteine (Cys) on the Au12 cluster that simulates the (111) face of single-crystal gold is studied in the framework of the density functional theory. Effects of solvation of adsorbed Cys particles and lateral interaction in a monolayer are analyzed. The simulation predicts a commensurate adsorption energetics of the molecule and radical, with a difference between the “on-top,” “hollow,” and “bridge” positions. An analysis of lateral electrostatic interactions points to the stability of a cluster comprising six Cys particles, which conforms to the size of a fragment observed experimentally. Adsorption calculations are used to build three-dimensional isosurfaces (STM images), where the tungsten needle of the scanning tunneling microscope is simulated by a tungsten atom or by small clusters. The calculated images are sensitive to both the Cys shape and the orientation of adsorbed Cys particles. Calculation results are compared with fresh in situ submolecular-resolution STM data. Simulated images (with commensurate contributions made by sulfur atom and amino group) built for Cys radical adsorbed in the “on-top” position give best conformance to experiment.  相似文献   

7.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

8.
The adsorption of terephthalic acid [C(6)H(4)(COOH)(2), TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images.  相似文献   

9.
Behavior of large organic molecules equipped with spacer groups (Violet Landers, VL) on the TiO2(110)‐(1×1) surfaces is investigated by means of high‐resolution scanning tunneling microscopy (STM). Two distinct adsorption geometries are observed. We demonstrate that the molecule adsorption morphology can be alternated by well‐controlled STM tip‐induced manipulation. It is used to probe the mobility of molecules and reveals locking in one of the analyzed adsorption sites, thus allow to enhance or reduce the mobility along the [001] direction. Field induced hydrogen desorption is used to perform lateral STM manipulation on a hydroxyl‐free surface, which provides insight into the influence of surface hydroxyl groups on the molecule behavior. The ability to image with submolecular resolution both the central board and the spacer groups of the VL molecule is demonstrated.  相似文献   

10.
Scanning tunneling microscopy (STM) has been used to investigate the structure of the ordered methanethiolate overlayer formed on Ag(111) by reaction at room temperature with dimethyl disulfide. High-resolution images show an ordered structure with three inequivalent atomic-scale protrusions within each ( radical7 x radical7)R19 degrees surface unit mesh which can be reconciled with methanethiolate species on a regular lateral submesh, similar to that proposed in the multilayer ( radical7 x radical7)R19 degrees -S sulfide phase previously reported. STM imaging during dynamic dosing also provides evidence for a significant change in the outermost layer Ag atom density, consistent with a reconstructed surface model. Possible models for this reconstruction are presented and discussed in the light of available information.  相似文献   

11.
The reaction of methyl iodide with the Al(111) surface was studied by room-temperature scanning tunneling microscopy (STM) and by first principles calculations. It was found that at 300 K methyl iodide decomposes on the Al(111) surface, forming methyl (CH(3)), methylidyne (CH), and adsorbed iodine. Methyl groups are observed to occupy atop sites by STM. The occupation of the hollow site by methylidyne was observed in STM measurements. Total energy density functional theory calculations have shown that methyl species occupy atop Al sites (E(A) = 45.3 kcal/mol), methylidyne species adsorb on fcc hollow sites (E(A) = 155.0 kcal/mol), while individual iodine atoms can bind on both on-top or hollow sites with adsorption energies between 54 and 56 kcal/mol.  相似文献   

12.
By using a combination of scanning tunneling microscopy (STM), density functional theory (DFT), and secondary‐ion mass spectroscopy (SIMS), we explored the interplay and relative impact of surface versus subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO) are virtually absent in the vicinity of positively charged subsurface point defects. This observation is consistent with DFT calculations of the impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 was employed and was observed to be suppressed around them. DFT results attribute this to a perceived absence of intrinsic (Ti), and likely extrinsic interstitials in the nearest subsurface layer beneath inhibited areas. We also postulate that the entire nearest subsurface region could be devoid of any charged point defects, whereas prevalent surface defects (VO) are largely responsible for mediation of the redox chemistry at the reduced TiO2(110).  相似文献   

13.
We present the first scanning tunneling microscopy (STM) study of the deposition of mass-selected silver clusters (Ag(n),n=1, 2, 3) on a rutile TiO(2)(110)-1x1 surface at room temperature under hard-landing conditions. Under hard-landing conditions, only small features are observed on the surface in all cases without sintering or surface damage. This suggests that the high impact energy of the clusters mainly dissipates as thermal energy in the substrate, resulting in the recovery of any initial impact-induced surface damage and the formation of bound clusters on the surface near the impact point. STM images indicate that Ag(1) binds on the bridging oxygen rows twice as often as on the Ti rows. Density-functional Theory (DFT) calculations are consistent with Ag(1) binding at either bridging oxygen vacancies or with two adjacent bridging oxygen atoms in the same bridging oxygen row. STM images of Ag(2) and Ag(3) depositions indicate almost exclusive binding centered on the Ti-atom rows. DFT calculations suggest that the Ag(2) and Ag(3) clusters are bound between two bridging oxygen rows, which is consistent with the STM observations.  相似文献   

14.
The growth of Ag on an ordered Al2O3 surface was studied by low energy ion scattering spectroscopy (LEIS), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). Three-dimensional (3D) growth of Ag clusters was observed with STM and LEIS, with the cluster size increasing with Ag coverage. The XPS core level binding energies and the Auger parameters indicate a weak interaction between the Ag clusters and the Al2O3 support. Final state effects are determined to be the primary contribution to the Ag core level binding energy shift. Nonzero order kinetics was observed for Ag desorption in TPD with the Ag sublimation energy decreasing with decreasing cluster size.  相似文献   

15.
The growth of epitaxial ultrathin BaTiO(3) films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O(2). By adjusting the Ar and O(2) partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO(3)(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO(3) films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO(3)(100)-(1 × 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 × 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO(3) thin film starts to decay by formation of vacancy islands. In addition (4 × 4) and (3 × 3) surface reconstructions develop upon prolonged heating.  相似文献   

16.
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.  相似文献   

17.
The effect of sulfur on alkoxide formation and decomposition on the Ni(100) surface has been investigated with STM and LEED. At low coverage sulfur adsorbs into a p(2 x 2) structure, in agreement with LEED measurements and previous STM results. With increasing sulfur coverage, the p(2 x 2) structure saturates the surface and scattered domains of c(2 x 2) appear. Further increases in sulfur coverage affect increases in c(2 x 2) domain sizes; the state of the sulfur-covered surface up to 0.43 ML is characterized by p(2 x 2) and c(2 x 2) domains. STM measurements of the evolution of the sulfur-covered surface with D(2)S(g) adsorption are suggestive of sulfur nucleation and growth at multiple sites on the surface. Alkoxide formation on these surfaces was studied following exposure to ROH (R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and C(6)H(5)). The alkoxy surface intermediates adsorbed in p(2 x 2)-S vacancies and, in the case of phenoxy, between hollow sites. Agreement between the methoxy coverage determined by XPS and the fraction of the surface covered with p(2 x 2)-S, as determined by STM, suggests that the p(2 x 2) vacancies are the sites of methoxy adsorption, and hence the active sites for selective poisoning.  相似文献   

18.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

19.
The adsorption of individual Violet Lander molecules self‐assembled on the c(8×2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low‐temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5‐di‐tert‐butylphenyl groups around σ bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.  相似文献   

20.
Nartova  A. V.  Kvon  R. I. 《Kinetics and Catalysis》2004,45(5):730-734
The results of a study of a specially prepared Ag/Al2O3 model system by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are presented. The surface morphology of a model support (a thin alumina film on a conducting support) and a model supported catalyst (Ag/Al2O3) was characterized using STM. The first experimental results obtained in the STM and XPS study of the sintering of supported catalysts are reported, which demonstrate the capabilities of these techniques for studies of this kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号