共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with existence of global weak solutions to a class of compressible Navier-Stokes equations with density-dependent viscosity and vacuum. When the viscosity coefficient μ is proportional to ρθ with , a global existence result is obtained which improves the previous results in Fang and Zhang (2004) [4], Vong et al. (2003) [27], Yang and Zhu (2002) [30]. Here ρ is the density. Moreover, we prove that the domain, where fluid is located on, expands outwards into vacuum at an algebraic rate as the time grows up due to the dispersion effect of total pressure. It is worth pointing out that our result covers the interesting case of the Saint-Venant model for shallow water (i.e., θ=1, γ=2). 相似文献
2.
In this paper, we investigate an initial boundary value problem for 1D compressible isentropic Navier-Stokes equations with large initial data, density-dependent viscosity, external force, and vacuum. Making full use of the local estimates of the solutions in Cho and Kim (2006) [3] and the one-dimensional properties of the equations and the Sobolev inequalities, we get a unique global classical solution (ρ,u) where ρ∈C1([0,T];H1([0,1])) and u∈H1([0,T];H2([0,1])) for any T>0. As it is pointed out in Xin (1998) [31] that the smooth solution (ρ,u)∈C1([0,T];H3(R1)) (T is large enough) of the Cauchy problem must blow up in finite time when the initial density is of nontrivial compact support. It seems that the regularities of the solutions we obtained can be improved, which motivates us to obtain some new estimates with the help of a new test function ρ2utt, such as Lemmas 3.2-3.6. This leads to further regularities of (ρ,u) where ρ∈C1([0,T];H3([0,1])), u∈H1([0,T];H3([0,1])). It is still open whether the regularity of u could be improved to C1([0,T];H3([0,1])) with the appearance of vacuum, since it is not obvious that the solutions in C1([0,T];H3([0,1])) to the initial boundary value problem must blow up in finite time. 相似文献
3.
In this paper, we consider one-dimensional compressible isentropic Navier-Stokes equations with the viscosity depending on density and with free boundary. The viscosity coefficient μ is proportional to ρθ with 0<θ<1, where ρ is the density. The existence and uniqueness of global weak solutions in H1([0,1]) have been established in [S. Jiang, Z. Xin, P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal. 12 (2005) 239-252]. We will establish the regularity of global solution under certain assumptions imposed on the initial data by deriving some new a priori estimates. 相似文献
4.
Science China Mathematics - We consider the full compressible Navier-Stokes equations with reaction diffusion. A global existence and uniqueness result of the strong solution is established for the... 相似文献
5.
6.
Ruxu Lian 《Journal of Differential Equations》2010,248(8):1926-1954
The dynamical behaviors of vacuum states for one-dimensional compressible Navier-Stokes equations with density-dependent viscosity coefficient are considered. It is first shown that a unique strong solution to the free boundary value problem exists globally in time, the free boundary expands outwards at an algebraic rate in time, and the density is strictly positive in any finite time but decays pointwise to zero time-asymptotically. Then, it is proved that there exists a unique global weak solution to the initial boundary value problem when the initial data contains discontinuously a piece of continuous vacuum and is regular away from the vacuum. The solution is piecewise regular and contains a piece of continuous vacuum before the time T∗>0, which is compressed at an algebraic rate and vanishes at the time T∗, meanwhile the weak solution becomes either a strong solution or a piecewise strong one and tends to the equilibrium state exponentially. 相似文献
7.
In this paper, we will investigate the global existence of solutions for the one-dimensional compressible Navier-Stokes equations when the density is in contact with vacuum continuously. More precisely, the viscosity coefficient is assumed to be a power function of density, i.e., μ(ρ)=Aρθ, where A and θ are positive constants. New global existence result is established for 0<θ<1 when the initial density appears vacuum in the interior of the gas, which is the novelty of the presentation. 相似文献
8.
We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity μ(ρ) = Aρ α , where α > 0 and A > 0. The global existence of strong solutions is obtained, which improves the previous results by enlarging the interval of α. Moreover, our result shows that no vacuum is developed in a finite time provided the initial data does not contain vacuum. 相似文献
9.
Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity
In this paper we study a free boundary problem for the viscous, compressible, heat conducting, one-dimensional real fluids. More precisely, the viscosity is assumed to be a power function of density, i.e., μ(ρ)=ρα, where ρ denotes the density of fluids and α is a positive constant. In addition, the equations of state include and are more general than perfect flows which only depend linearly on temperature. The global existence (uniqueness) of smooth solutions is established with for general, large initial data, which improves the previous results. Moreover, it is also shown that the solutions will not develop vacuum, mass concentration or heat concentration in a finite time provided the initial data are bounded and smooth, and do not contain vacuum. 相似文献
10.
Daoyuan Fang 《Journal of Mathematical Analysis and Applications》2006,318(1):224-245
In this paper, we study the evolutions of the interfaces between gas and the vacuum for one-dimensional viscous gas motions when the initial density connects to vacuum continuously. The degeneracy appears in the initial data and has effect on the viscosity coefficient because the coefficient is assumed to be a power function of the density. Using some new a priori estimates, we establish the new local (in time) existence and uniqueness results under minimal hypotheses on the initial density, so that the interval for the power of the density in the viscosity coefficient is enlarged to (0,γ). In particular, we include the important case that the initial density could be piecewise smooth with arbitrarily large jump discontinuities, and could degenerate to zero. 相似文献
11.
In this paper, we consider one-dimensional compressible isentropic Navier-Stokes equations with the viscosity depending on density and with the free boundary. The viscosity coefficient μ is proportional to ρθ with θ>0, where ρ is the density. The existence, uniqueness, regularity of global weak solutions in H1([0,1]) have been established by Xin and Yao in [Z. Xin, Z. Yao, The existence, uniqueness and regularity for one-dimensional compressible Navier-Stokes equations, preprint]. Furthermore, under certain assumptions imposed on the initial data, we improve the regularity result obtained in [Z. Xin, Z. Yao, The existence, uniqueness and regularity for one-dimensional compressible Navier-Stokes equations, preprint] by driving some new a priori estimates. 相似文献
12.
In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solution, give some uniform bounds (with respect to time) of the solution and show that it converges to a stationary one as time tends to infinity. Moreover, we obtain the stabilization rate estimates of exponential type in L∞-norm and weighted H1-norm of the solution by constructing some Lyapunov functionals. The results show that such system is stable under the small perturbations, and could be applied to the astrophysics. 相似文献
13.
We consider the initial value problem for multi-dimensional bipolar compressible Navier-Stokes-Poisson equations, and show
the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium
state. 相似文献
14.
In this paper, we consider the equations of Magnetohydrodynamics with Coulomb force which is of hyperbolic–parabolic–elliptic mixed type. By constructing the approximate solutions to the modified system with an artificial pressure term added, global existence of finite energy weak solutions is established via the weak convergence method. More careful argument has been paid to overcome the new difficulty arising from the Poisson term of Coulomb force in two dimensions when the adiabatic exponent is close to one. We also investigate the large-time behavior of such weak solutions after discussing the regularity and uniqueness of solutions to the stationary problem. 相似文献
15.
This paper is concerned with the Cauchy problems of one-dimensional compressible Navier-Stokes equations with density-dependent viscosity coefcients.By assumingρ0∈L1(R),we will prove the existence of weak solutions to the Cauchy problems forθ〉0.This will improve results in Jiu and Xin’s paper(Kinet.Relat.Models,1(2):313–330(2008))in whichθ〉12is required.In addition,We will study the large time asymptotic behavior of such weak solutions. 相似文献
16.
Given initial data(ρ0, u0) satisfying 0 m ρ0≤ M, ρ0- 1 ∈ L2∩˙W1,r(R3) and u0 ∈˙H-2δ∩ H1(R3) for δ∈ ]1/4, 1/2[ and r ∈ ]6, 3/1- 2δ[, we prove that: there exists a small positive constant ε1,which depends on the norm of the initial data, so that the 3-D incompressible inhomogeneous Navier-Stokes system with variable viscosity has a unique global strong solution(ρ, u) whenever‖ u0‖ L2 ‖▽u0 ‖L2 ≤ε1 and ‖μ(ρ0)- 1‖ L∞≤ε0 for some uniform small constant ε0. Furthermore, with smoother initial data and viscosity coefficient, we can prove the propagation of the regularities for such strong solution. 相似文献
17.
Daoyuan Fang 《Journal of Differential Equations》2006,222(1):63-94
In this paper, we study the evolutions of the interfaces between the gas and the vacuum for viscous one-dimensional isentropic gas motions. We prove the global existence and uniqueness for discontinuous solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity coefficient. Precisely, the viscosity coefficient μ is proportional to ρθ with 0<θ<1. Specifically, we require that the initial density be piecewise smooth with arbitrarily large jump discontinuities, bounded above and below away from zero, in the interior of gas. We show that the discontinuities in the density persist for all time, and give a decay result for the density as t→+∞. 相似文献
18.
19.
Huanyao Wen 《Journal of Mathematical Analysis and Applications》2009,349(2):503-515
This paper is concerned with global strong solutions of the isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in one-dimensional bounded intervals. Precisely, the viscosity coefficient μ=μ(ρ) and the pressure P is proportional to ργ with γ>1. The important point in this paper is that the initial density may vanish in an open subset. We also show that the strong solution obtained above is unique provided that the initial data satisfies additional regularity and a compatible condition. Compared with former results obtained by Hyunseok Kim in [H. Kim, Global existence of strong solutions of the Navier-Stokes equations for one-dimensional isentropic compressible fluids, available at: http://com2mac.postech.ac.kr/papers/2001/01-38.pdf], we deal with density-dependent viscosity coefficient. 相似文献