首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This review gives an overview of the latest advances in dopant-free hole transporting materials (HTMs) for perovskite solar cells and discusses the new molecular design strategies towards efficient and stable dopant-free HTMs.  相似文献   

2.
The commercialization of perovskite solar cells (PVSCs) urgently requires the development of green-solvent processable dopant-free hole transporting materials (HTMs). However, strong intermolecular interactions that ensure high hole mobility always compromise the solubility and film-forming ability in green solvents. Herein, we show a simple but effective design strategy to solve this trade-off, that is, constructing star-shaped D-A-D structure. The resulting HTMs (BTP1-2) can be processed by green solvent of 2-methylanisole (2MA), a kind of food additive, and show high hole mobility and multiple defect passivation effects. An impressive efficiency of 24.34 % has been achieved for 2MA-processed BTP1 based inverted PVSCs, the highest value for green-solvent processable HTMs so far. Moreover, it is manifested that the charge separation of D-A type HTMs at the photoinduced excited state can help to passivate the defects of perovskites, indicating a new HTM design insight.  相似文献   

3.
Organic p‐type semiconductors with tunable structures offer great opportunities for hybrid perovskite solar cells (PVSCs). We report herein two dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) cored molecular semiconductors prepared through π‐conjugation extension and an N‐alkylation strategy. The as‐prepared conjugated molecules exhibit a highest occupied molecular orbital (HOMO) level of ?4.82 eV and a hole mobility up to 2.16×10?4 cm2 V?1 s?1. Together with excellent film‐forming and over 99 % photoluminescence quenching efficiency on perovskite, the DTP based semiconductors work efficiently as hole‐transporting materials (HTMs) for n‐i‐p structured PVSCs. Their dopant‐free MA0.7FA0.3PbI2.85Br0.15 devices exhibit a power conversion efficiency over 20 %, representing one of the highest values for un‐doped molecular HTMs based PVSCs. This work demonstrates the great potential of using a DTP core in designing efficient semiconductors for dopant‐free PVSCs.  相似文献   

4.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm?2 V?1 s?1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.  相似文献   

5.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   

6.
Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.  相似文献   

7.
In this paper, two D-π-D type compounds, C1 and C2 , containing dihydrodinaphthopentacene (DHDNP) as a π-bridge, p-methoxydiphenylamine and p-methoxytriphenylamine groups as the donor groups were synthesized. The four 4-hexylphenyl groups at the sp3-carbon bridges of DHDNP were acquainted with control morphology and improving solubility. The light absorption, energy level, thermal properties, and application as hole-transporting materials in perovskite solar cells of these compounds were fully investigated. The HOMO/LUMO levels and energy gaps of these DHDNP-based molecules are suitable for use as hole-transporting materials in PSCs. The best power conversion efficiencies of the PVSCs based on the C1 and C2 are 15.96% and 12.86%, respectively. The performance of C1 is comparable to that of the reference compound spiro-OMeTAD (16.38%). Compared with spiro-OMeTAD, the C1 -based PVSC device showed good stability, which was slightly decreased to 98.68% of its initial efficiency after 48 h and retained 81% of its original PCE after 334 h without encapsulation. These results reveal the potential usefulness of the DHDNP building block for further development of economical and highly efficient HTMs for PVSCs.  相似文献   

8.
Organic semiconductors with noncovalently conformational locks (OSNCs) are promising building blocks for hole-transporting materials (HTMs). However, lack of satisfied neighboring building blocks negatively impacts the optoelectronic properties of OSNCs-based HTMs and imperils the stability of perovskite solar cells (PSCs). To address this limitation, we introduce the benzothieno[3,2-b]thiophene (BTT) to construct a new OSNC, and the resulting HTM ZS13 shows improved intermolecular charge extraction/transport properties, proper energy level, efficient surface passivation effect. Consequently, the champion devices based on doped ZS13 yield an efficiency of 24.39 % and 20.95 % for aperture areas of 0.1 and 1.01 cm2, respectively. Furthermore, ZS13 shows good thermal stability and the capability of inhibiting I ion migration, thus, leading to enhanced device stability. The success in neighboring-group engineering can triggered a strong interest in developing thienoacene-based OSNCs toward efficient and stable PSCs.  相似文献   

9.
The construction of state‐of‐the‐art hole‐transporting materials (HTMs) is challenging regarding the appropriate molecular configuration for simultaneously achieving high morphology uniformity and charge mobility, especially because of the lack of appropriate building blocks. Herein a semi‐locked tetrathienylethene (TTE) serves as a promising building block for HTMs by fine‐tuning molecular planarity. Upon incorporation of four triphenylamine groups, the resulting TTE represents the first hybrid orthogonal and planar conformation, thus leading to the desirable electronic and morphological properties in perovskite solar cells (PSCs). Owing to its high hole mobility, deep lying HOMO level, and excellent thin film quality, the dopant‐free TTE‐based PSCs exhibit a very promising efficiency of over 20 % with long‐term stability, achieving to date the best performances among dopant‐free HTM‐based planar n‐i‐p structured PSCs.  相似文献   

10.
A decade of significant research has led to the emergence of photovoltaic solar cells based on perovskites that have achieved an exceptionally high-power conversion efficiency of 26.08%. A key breakthrough in perovskite solar cells (PSCs) occurred when solid hole-transporting materials (HTMs) replaced liquid electrolytes in dye-sensitized solar cells (DSSCs), because HTMs play a crucial role in improving photovoltaic performance as well as cell stability. This review is mainly focused on the HTMs that are responsible for hole transport and extraction in PSCs, which is one of the crucial components for efficient devices. Here, we have reviewed small molecular as well as polymeric HTMs that have been reported in the last two years and discussed their performance based on the analysis of their molecular architectures. Finally, we include a perspective on the molecular engineering of new functional HTMs for highly efficient stable PSCs.  相似文献   

11.
钙钛矿太阳能电池在实现高性能光伏器件方面展现出巨大的商业化应用前景,但面临着一个最主要的挑战是开发工业化规模生产的大面积高质量钙钛矿薄膜制备工艺。在本研究中,为解决大面积印刷难题,通过两步连续刮涂法制备甲脒基钙钛矿吸光层。两步法中第一步沉积的PbI2很容易形成致密的薄膜,这将导致后续沉积的有机胺盐无法和PbI2充分完全反应,在钙钛矿薄膜中残留PbI2,这会严重影响载流子的传输。为了实现理想的多孔PbI2薄膜结构,我们通过在PbI2前驱体溶液中引入四亚甲基亚砜(THTO)。通过形成PbI2·THTO络合物,PbI2的结晶过程被有效控制,易形成片状的PbI2晶粒并沿着垂直基底方向上排列,得到了理想的纳米通道。这为后续的有机胺盐渗入提供了理想的纳米通道。最终5 cm × 5 cm模组实现了18.65%的功率转化效率,并具有出色的存储和热稳定性。这一结果展现了两步连续刮涂法策略在制备大面积钙钛矿太阳能电池方面具备一定的优势。  相似文献   

12.
Organic π-functional molecules are the foundation and basic component of organic optoelectronic devices.For example,for ideal carrier transporting materials,extended π-conjugation and ordered π-πstacking are necessary to enhance the charge mobility and achieve desirable results.As a promising way to convert sunlight into electricity,organometal halide perovskite solar cells(PSCs) have captured a lot of attention due to its predominant merits especially in the aspect of remarkable photovoltaic performance and much potentially low production cost.For conventional planar PSC structure,hole-transporting layer which typically consists of organic π-functional materials plays a key role in suppressing holeelectron pair recombination,promoting charge transporting and ensuring ohmic contact of back electrode.Considering the key roles of HTMs and its soaring progress in recent years,here,we will summarize recent progress in small organic π-functional materials from its diverse functions in PSCs.Besides,aiming to further promote the development of organic π-functional molecules and HTMs,a promising direction toward highly efficient HTMs will also be discussed.  相似文献   

13.
Perovskite solar cells have gained immense interest from researchers owing to their good photophysical properties, low-cost production, and high power conversion efficiencies. Hole transport materials (HTMs) play a dominant role in enhancing the power conversion efficiencies (PCEs) and long diffusion length of holes and electrons in perovskite solar cells. In hole transport materials, modification of π-linkers has proved to be an efficient approach for enhancing the overall PCE of perovskite solar cells. In this work, π-linker modification of a recently synthesized H−Bi molecule ( R ) is achieved with novel π-linkers. After structural modifications, ten novel HTMs ( HB1–HB10 ) with a D−π−D backbone are obtained. The structure–property relationship, and optoelectronic and photovoltaic characteristics of these newly designed hole transport materials are examined comprehensively and compared with reference molecules. In addition, different geometric parameters are also examined with the assistance of density functional theory (DFT) and time-dependent DFT. All the designed molecules exhibit narrow HOMO–LUMO energy gaps (Eg=2.82–2.99 eV) compared with the R molecule (Eg=3.05 eV). The designed molecules express redshifting in their absorption spectra with low values of excitation energy, which in return offer high power conversion efficiencies. Further, density of states and molecular electrostatic potential analysis is performed to locate the different charge sites in the molecules. The reorganizational energies of holes and electrons are found to have good values, suggesting that these novel designed molecules are efficient hole transport materials for perovskite solar cells. In addition, the low binding energy values of the designed molecules (compared with R ) offer high current charge density. Finally, complex study of HB9:PC61BM is also undertaken to understand the charge transfer between the molecules of the complex. The results of all analyses advocate that these novel designed HTMs are promising candidates for the construction of future high-performance perovskite solar cells.  相似文献   

14.
With perovskite‐based solar cells (PSCs) now reaching efficiencies of greater than 20 %, the stability of PSC devices has become a critical challenge for commercialization. However, most efficient hole‐transporting materials (HTMs) thus far still rely on the state‐of‐the‐art methoxy triphenylamine (MOTPA) donor unit in which methoxy groups usually reduce the device stability. Herein, a carbazole‐fluorene hybrid has been employed as a methoxy‐free donor to construct organic HTMs. The indeno[1,2‐b]carbazole group not only inherits the characteristics of carbazole and fluorene, but also exhibits additional advantages arising from the bulky planar structure. Consequently, M129, endowed with indeno[1,2‐b]carbazole simultaneously exhibits a promising efficiency of over 20 % and superior long‐term stability. The hybrid strategy toward the methoxy‐free donor opens a new avenue for developing efficient and stable HTMs.  相似文献   

15.
Incorporation of proper inorganic p-type semiconductors as hole transport layer has great potential to increase long-term stability while maintaining high power conversion efficiency of perovskite solar cells with low material cost.  相似文献   

16.
Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic‐inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2’,7,7’‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine) 9,9‐spirobifluorene (spiro‐OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuOx reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs.  相似文献   

17.
The performances of electron-transport-layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurring at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we demonstrate for the first time that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (ca. 3 nm) between the TCO and perovskite facilitates electron tunneling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1 % for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7 %), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO2 ETLs.  相似文献   

18.
Multi-branched molecules have recently demonstrated interesting behaviour as charge-transporting materials within the fields of perovskite solar cells (PSCs). For this reason, extended triarylamine dendrons have been grafted onto a pillar[5]arene core to generate dendrimer-like compounds, which have been used as hole-transporting materials (HTMs) for PSCs. The performances of the solar cells containing these novel compounds have been extensively investigated. Interestingly, a positive dendritic effect has been evidenced as the hole transporting properties are improved when going from the first to the second-generation compound. The stability of the devices based on the best performing pillar[5]arene material has been also evaluated in a high-throughput ageing setup for 500 h at high temperature. When compared to reference devices prepared from spiro-OMeTAD, the behaviour is similar. An analysis of the economic advantages arising from the use of the pillar[5]arene-based material revealed however that our pillar[5]arene-based material is cheaper than the reference.  相似文献   

19.
Perovskite solar cells (PSCs) are highly efficient and are comparatively cheaper than the large silicon crystals primarily used in solar cells. Their outstanding photovoltaic performance makes them a potential alternative to silicon solar cells. While efficiency and photovoltaic performance have been investigated in recent decades, a knowledge gap on the degradation, economic feasibility and stability of PSCs exists, and their poor stability remains a barrier to commercialization. Thus, this review aims to fill this knowledge gap by focusing on approaches to improve PSCs’ thermal and chemical stability, and their economic viability under different conditions. The structure and manufacture of PSCs are also discussed along with an economic analysis of different perovskite devices. Improvements in thermal stability can be reached by incorporating inorganic materials into the PSC. A PSC model optimized with ZnO improves chemical stability by 8% and works well under low temperatures. To make PSCs more economically feasible, certain parts like counter electrodes (CE) and hole transport materials (HTMs) can be replaced with alternative elements like carbon and inorganic HTMs, respectively. PSCs with long durability and high conversion efficiency will expand the commercial prospects for this material. To bridge the lack of knowledge, further investigation is required on the sustainability and longevity of PSCs.  相似文献   

20.
钙钛矿太阳能电池由于具有高的光电转换效率,简单的溶液加工工艺,较低的成本等优势因而拥有广阔的应用前景。有机小分子空穴传输层材料在钙钛矿太阳能电池中扮演着极其重要的角色。在本工作中,我们设计和合成了基于吡嗪为分子中心核,三苯胺为分枝的X型空穴传输层材料PT-TPA。与Si-OMeTPA对比,吡嗪的引入不仅不会影响其结晶性,并且能够改善其电荷转移特性和分子中心共平面性,从而显著提升了PT-TPA的空穴迁移率。在非掺杂的情况之下,基于PT-TPA空穴传输层的p-i-n型钙钛矿太阳能电池展现出17.52%的光电转换效率,与相同条件下基于Si-OMeTPA空穴传输层的器件相比,效率提高了近15%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号