首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic metal halide perovskite materials have excellent photoelectric properties, and the power conversion efficiency(PCE) of the perovskite solar cells(PSCs) has increased from 3.8% to more than 25%. In the development of PSCs, innovative architectures were being proposed constantly. However, the use of the electron transport layer(ETL) and hole transport layer(HTL) increases manufacturing costs and process complexity. Perovskite material has ambipolar charge transport characteristics, so it c...  相似文献   

2.
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) has been identified as the most used and effective p-dopant for hole transport layer (HTL) in perovskite solar cells (PSCs). However, the migration and agglomeration of Li-TFSI in HTL negatively impact PSCs performance and stability. Herein, we report an effective strategy for adding a liquid crystal organic small molecule (LQ) into Li-TFSI doped (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-OMeTAD) HTL. It was found that the introduction of LQ into Spiro-OMeTAD HTL can efficiently enhance the charge carrier extraction and transportation in device, which can strongly retard the charge carrier recombination in device. Consequently, the PSCs efficiency is significantly enhanced to 24.42 % (Spiro-OMeTAD+LQ) from 21.03 % (Spiro-OMeTAD). The chemical coordination between LQ and Li-TFSI can strongly confine Li+ ions migration and agglomeration of Li-TFSI, thus, achieving the enhanced device stability. Only a 9 % efficiency degradation is observed for un-encapsulated device prepared with Spiro-OMeTAD and LQ after 1700 h under air environment, while the efficiency drops by 30 % for the reference device. This work provides an effective strategy for improving the efficiency and stability of PSCs, and gives some important insights for understanding intrinsic hot carriers dynamics for perovskite-based optoelectronic devices.  相似文献   

3.
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85MA0.15Pb(I0.95Br0.05)3-based PSCs by incorporating Ti3C2Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb−Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.  相似文献   

4.
Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL)for mesoporous perovskite solar cells.Due to the improved crystal phase,fihn thickness and nanopartMe size of TiO2 layer,which were controlled by varying the one-step hydrothermal reaction time and annealing time,the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm^2,and a maximum power conversion efficiency(PCE)of 19.87%.It is found that the ultra-high Jsc attributes to the excellent film quality,light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film.The results indicate that mix-phase mesoporous metal oxide fihns could be a promising candidate for producing effective ETLs and high efficiency PSCs.  相似文献   

5.
Low band gap tin-lead perovskite solar cells (Sn−Pb PSCs) are expected to achieve higher efficiencies than Pb-PSCs and regarded as key components of tandem PSCs. However, the realization of high efficiency is challenged by the instability of Sn2+ and the imperfections at the charge transfer interfaces. Here, we demonstrate an efficient ideal band gap formamidinium (FA)-based Sn−Pb (FAPb0.5Sn0.5I3) PSC, by manipulating the buried NiOx/perovskite interface with 4-hydroxyphenethyl ammonium halide (OH-PEAX, X=Cl, Br, or I) interlayer, which exhibits fascinating functions of reducing the surface defects of the NiOx hole transport layer (HTL), enhancing the perovskite film quality, and improving both the energy level matching and physical contact at the interface. The effects of different halide anions have been elaborated and a 20.53 % efficiency is obtained with OH-PEABr, which is the highest one for FA-based Sn−Pb PSCs using NiOx HTLs. Moreover, the device stability is also boosted.  相似文献   

6.
Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.  相似文献   

7.
Electron transport materials (ETM) play an important role in the improvement of efficiency and stability for inverted perovskite solar cells (PSCs). This work reports an efficient ETM, named PDI‐C60, by the combination of perylene diimide (PDI) and fullerene. Compared to the traditional PCBM, this strategy endows PDI‐C60 with slightly shallower energy level and higher electron mobility. As a result, the device based on PDI‐C60 as electron transport layer (ETL) achieves high power conversion efficiency (PCE) of 18.6 %, which is significantly higher than those of the control devices of PCBM (16.6 %) and PDI (13.8 %). The high PCE of the PDI‐C60‐based device can be attributed to the more matching energy level with the perovskite, more efficient charge extraction, transport, and reduced recombination rate. To the best of our knowledge, the PCE of 18.6 % is the highest value in the PSCs using PDI derivatives as ETLs. Moreover, the device with PDI‐C60 as ETL exhibits better device stability due to the stronger hydrophobic properties of PDI‐C60. The strategy using the PDI/fullerene hybrid provides insights for future molecular design of the efficient ETM for the inverted PSCs.  相似文献   

8.
The electron transport layer(ETL) plays an important role in planar heterojunction perovskite solar cell(PSCs),by affecting the light-harvesting, electron injection and transportation processes, and especially the crystallization of perovskite absorber. In this work, we utilized a commercial TKD-TiO_2 nanoparticle with a small diameter of 6 nm for the first time to prepare a compact ETL by spin coating. The packing of small-size particles endowed TKD-TiO_2 ETL an appropriate surface-wettability, which is beneficial to the crystallization of perovskite deposited via solution-processed method. The uniform and high-transmittance TKD-TiO_2 films were successfully incorporated into PSCs as ETLs. Further careful optimization of ETL thickness gave birth to a highest power conversion efficiency of 11.0%, which was much higher than that of PSC using an ETL with the same thickness made by spray pyrolysis. This TKD-TiO_2 provided a universal solar material suitable for the further large-scale production of PSCs. The excellent morphology and the convenient preparation method of TKD-TiO_2 film gave it an extensive application in photovoltaic devices.  相似文献   

9.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   

10.
Jia  Xuguang  Zhang  Yi  Zhang  Jing  Sun  Quan  Guo  Huafei  Wang  Yikai  Zhang  Shuai  Yuan  Ningyi  Ding  Jianning 《中国科学:化学(英文版)》2020,63(6):827-832
Hole transport layers(HTLs) play a significant role in the performance of perovskite solar cells. A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group, carbon, oxygen and sulfur as the center atoms for the center unit(denoted as MT-based small-molecule), respectively, have been applied as HTL, and two of them presented the efficiency over 20% in the planar inverted perovskite solar cells(PSCs), which demonstrated a significant improvement in comparison with the widely used HTL, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(known as PEDOT:PSS), in the planar inverted architecture. The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples. The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI_3 can be filled much quicker than that at PEDOT/MAPbI_3 interfaces. Moreover, the hole injection time from MAPbI_3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS. Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances. These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.  相似文献   

11.
Graphene oxide (GO) materials have emerged as a promising alternative for hole transport layer (HTL) in polymer solar cells (PSCs) due to their unique structures and properties. However, insulating properties and eco-contaminative production of GO still need to be solved. Here, we report on the preparation of GO through an improved Hummers method without using NaNO3, which is an eco-friendly option because it avoids the emissions of NO2 and N2O4 toxic gases. Subsequently, the GO as HTL in PSCs is reduced by simple heat treatment of different temperatures in air, and the performance of devices is obviously improved. The FT-IR and XPS spectra show oxygenated functional groups in GO thin films are gradually removed with the increase of annealing temperature, which restores sp2 hybridized graphitic structure, and makes the GO thin films more conducive to the charge transfer. The highest power conversion efficiency of PSCs based on the P3HT: PC71BM system with GO as HTL is 3.39%, which approaches that of PSCs with PEDOT: PSS as HTL (3.41%). Moreover, the devices with annealed GO as HTL have better stability compared to devices with PEDOT: PSS.  相似文献   

12.
It is highly desirable to develop novel n‐type organic small molecules as an efficient electron‐transport layer (ETL) for the replacement of PCBM to obtain high‐performance metal‐oxide‐free, solution‐processed inverted perovskite solar cells (PSCs) because this type of solar cells with a low‐temperature and solution‐based process would make their fabrication more feasible and practical. In this research, the new azaacene QCAPZ has been synthesized and employed as non‐fullerene ETL material for inverted PSCs through a solution‐based process without the need for additional dopants or additives. The as‐fabricated inverted PSCs show a power conversion efficiency up to 10.26 %. Our results clearly suggest that larger azaacenes could be promising electron‐transport materials to achieve high‐performance solution‐processed inverted PSCs.  相似文献   

13.
Current density-voltage(J-V) hysteresis issue caused by unbalanced charge transport has greatly limited the improvement of power conversion efficiency(PCE) of halide perovskite solar cells(PSCs). Herein, hollow TiO2 mesoporous electron transport layer(ETL) was used to fabricate PSCs. The structure-dependent charge collection as well as its effect on PCE and hysteresis impactor(HI) of PSC were investigated. The results demonstrate that TiO2 hollow spheres in a size of around 50 nm (HS-50) can form a high quality perovskite/ETL interface with a less trap density. Moreover, the hollow TiO2 with the thin shell can help promote the extraction of electrons from perovskite layer to ETL, so as to reduce the charge accumulation and recombination at the perovskite/ETL interface and alleviate the hysteresis behavior. As a result, PSCs with HS-50 TiO2 delivered a champion PCE of 16.81% with a small HI of 0.0297, indicating a better performance than the commercial P25(PCE of 15.87%, HI of 0.2571).  相似文献   

14.
PEDOT:PSS is a commonly used hole-transport layer (HTL) in inverted perovskite solar cells (PSCs) due to its compatibility with low-temperature solution processing. However, it possesses lower conductivity than other conductive polymers and metal oxides, along with surface defects, limiting its photovoltaic performance. In this study, we introduced two-dimensional Ti3C2Tx (MXene) as an additive in the PEDOT:PSS HTL with varying doping concentrations (i.e., 0, 0.03, 0.05, and 0.1 wt.%) to tune the electrical conductivity of PEDOT:PSS and to modify the properties of the perovskite film atop it. We noted that the grain size of the CH3NH3PbI3 (MAPI3) perovskite layer grown over an optimal concentration of MXene (0.03 wt.%)-doped PEDOT:PSS increased from 250 nm to 400 nm, reducing charge recombination due to fewer grain boundaries. Ultraviolet photoelectron spectroscopy (UPS) revealed increased work function (WF) from 4.43 eV to 4.99 eV with 0.03 wt.% MXene doping, making the extraction of holes easier due to a more favorable energy level alignment with the perovskite. Quantum chemical investigations based on density functional theory (DFT) were conducted at the ωB97XD/6-311++G(d,p) level of theory to provide more insight into the stability, bonding nature, and optoelectronic properties of the PEDOT:PSS–MXene system. The theoretical investigations revealed that the doping of PEDOT:PSS with Ti3C2Tx could cause a significant effect on the electronic properties of the HTL, as experimentally demonstrated by an increase in the electrical conductivity. Finally, the inverted PSCs employing 0.03 wt.% MXene-doped PEDOT:PSS showed an average power conversion efficiency (PCE) of 15.1%, up from 12.5% for a reference PSC employing a pristine PEDOT:PSS HTL. The champion device with a 0.03 wt.% MXene–PEDOT:PSS HTL achieved 15.5% PCE.  相似文献   

15.
Cao  Jing  Wu  Binghui  Peng  Jian  Feng  Xiaoxia  Li  Congping  Tang  Yu 《中国科学:化学(英文版)》2019,62(3):363-369
A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material(HTM) to enhance the charge transfer in inverted perovskite solar cells(PSCs). The outer CuI achieved efficient charge extraction, and the inner copper facilitated the extracted charges to be rapidly transferred, further improving the overall cell performance. Furthermore,we employed a mixture of [6,6]-phenyl-C71-butyric acid methyl ester(PCBM) and ZnO nanoparticles as electron transport material(ETM) to achieve the fabrication of stable PSCs. The best efficiency was up to 18.8%. This work represents a fundamental clue for the design of efficient and stable PSCs using the chemical in-situ construction strategy for HTM and integration of PCBM and ZnO as ETM.  相似文献   

16.
Metal halide perovskite solar cells (PSCs), with their exceptional properties, show promise as photoelectric converters. However, defects in the perovskite layer, particularly at the grain boundaries (GBs), seriously restrict the performance and stability of PSCs. Now, a simple post-treatment procedure involves applying 2-aminoterephthalic acid to the perovskite to produce efficient and stable PSCs. By optimizing the post-treatment conditions, we created a device that achieved a remarkable power conversion efficiency (PCE) of 21.09 % and demonstrated improved stability. This improvement was attributed to the fact that the 2-aminoterephthalic acid acted as a cross-linking agent that inhibited the migration of ions and passivated the trap states at GBs. These findings provide a potential strategy for designing efficient and stable PSCs regarding the aspects of defect passivation and crystal growth.  相似文献   

17.
Metal halide perovskite solar cells (PSCs), with their exceptional properties, show promise as photoelectric converters. However, defects in the perovskite layer, particularly at the grain boundaries (GBs), seriously restrict the performance and stability of PSCs. Now, a simple post‐treatment procedure involves applying 2‐aminoterephthalic acid to the perovskite to produce efficient and stable PSCs. By optimizing the post‐treatment conditions, we created a device that achieved a remarkable power conversion efficiency (PCE) of 21.09 % and demonstrated improved stability. This improvement was attributed to the fact that the 2‐aminoterephthalic acid acted as a cross‐linking agent that inhibited the migration of ions and passivated the trap states at GBs. These findings provide a potential strategy for designing efficient and stable PSCs regarding the aspects of defect passivation and crystal growth.  相似文献   

18.
Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention owing to their high absorption coefficient and ambipolar charge transport properties. With only several years of development, the power conversion efficiency (PCE) has increased from 3.8% to 22.7%. In general, PSCs have two types of structural architecture: mesoporous and planar. The latter possesses higher potential for commercialization due to its simpler structure and fabrication process, especially the inverted planar structure, which possesses negligible hysteresis. In an inverted PSC, the electron transport materials (ETM) are deposited on a perovskite film. Only a few ETMs can be used for inverted PSCs as the perovskite film is easily damaged by the solvent used to dissolve the ETM. Furthermore, the energy levels of the ETM should be well aligned with that of the perovskites. Normally it is difficult to use inorganic ETMs as they require high temperatures for the annealing process to improve the electron conductivity; the perovskite film cannot sustain these high temperatures. To date, the fullerene derivative, [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), is the most commonly used organic ETM for high efficiency inverted planar PSCs. However, the high manufacturing cost due to its complex synthesis retards the industrialization of the PSCs. Here, we introduce a fullerene pyrrolidine derivative, N-methyl-2-pentyl-[60]fullerene pyrrolidine (NMPFP), synthesized via the Prato reaction of C60 directly with cheap hexanal and sarcosine. Then the NMPFP electron transport layer (ETL) was prepared by a simple solution process. The properties of the resulting NMPFP ETLs were characterized using UV-Vis absorption spectroscopy, cyclic voltammetry measurements, atomic force microscopy, and conductivity test. From the results of the UV-Vis absorption spectroscopy and cyclic voltammetry measurements, the LUMO level of NMPFP ETL was calculated to be 0.2 eV higher than that of the PCBM ETL. This contributes to a higher open-circuit photovoltage. In addition, the NMPFP film presented higher conductivity than the PCBM film. Thus, the photo-generated charge carriers in the perovskite films should be transported more efficiently to the NMPFP electron transport layer (ETL) than to the PCBM ETL. This was confirmed by the results of the steady-state photoluminescence spectroscopy. Finally, the NMPFP as an alternative low-cost ETL was employed in an inverted planar PSC to evaluate the device performance. The device made with the NMPFP ETL yielded an efficiency of 13.83% with negligible hysteresis, which is comparable to the PCBM counterpart devices. Moreover, since stability is another important parameter retarding the commercialization of PSCs, the stability of the PCBM and NMPFP base PSCs were investigated and compared. It was found that the NMPFP devices possessed significantly improved stability due to the higher hydrophobicity of the NMPFP. In conclusion, this research demonstrates that NMPFP is a promising ETL to replace PCBM for the industrialization of cheap, efficient and stable inverted planar PSCs.  相似文献   

19.
A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs.  相似文献   

20.
Tin‐based perovskites with excellent optoelectronic properties and suitable band gaps are promising candidates for the preparation of efficient lead‐free perovskite solar cells (PSCs). However, it is challenging to prepare highly stable and efficient tin‐based PSCs because Sn2+ in perovskites can be easily oxidized to Sn4+ upon air exposure. Here we report the fabrication of air‐stable FASnI3 solar cells by introducing hydroxybenzene sulfonic acid or its salt as an antioxidant additive into the perovskite precursor solution along with excess SnCl2. The interaction between the sulfonate group and the Sn2+ ion enables the in situ encapsulation of the perovskite grains with a SnCl2–additive complex layer, which results in greatly enhanced oxidation stability of the perovskite film. The corresponding PSCs are able to maintain 80 % of the efficiency over 500 h upon air exposure without encapsulation, which is over ten times longer than the best result reported previously. Our results suggest a possible strategy for the future design of efficient and stable tin‐based PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号