首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future. Here, the strategy that uses chemical structure modification to optimize the photoelectric properties is reported. A new narrow bandgap (1.30 eV) chlorinated non-fullerene electron acceptor (Y15), based on benzo[d][1,2,3] triazole with two 3-undecyl-thieno[2′,3′:4,5] thieno[3,2-b] pyrrole fused -7-heterocyclic ring, with absorption edge extending to the near-infrared (NIR) region, namely A-DA'D-A type structure, is designed and synthesized. Its electrochemical and optoelectronic properties are systematically investigated. Benefitting from its NIR light harvesting, the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency (PCE) of 14.13%, when blending with a wide bandgap polymer donor PM6. Our results show that the A-DA'D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells (PSCs).  相似文献   

2.
Ma  Ruijie  Liu  Tao  Luo  Zhenghui  Guo  Qing  Xiao  Yiqun  Chen  Yuzhong  Li  Xiaojun  Luo  Siwei  Lu  Xinhui  Zhang  Maojie  Li  Yongfang  Yan  He 《中国科学:化学(英文版)》2020,63(3):325-330
Power conversion efficiency(PCE) of single-junction polymer solar cells(PSCs) has made a remarkable breakthrough recently.Plenty of work was reported to achieve PCEs higher than 16% derived from the PM6:Y6 binary system.To further increase the PCEs of binary OSCs incorporating small molecular acceptor(SMA) Y6,we substituted PM6 with PM7 due to the deeper highest occupied molecular orbital(HOMO) of PM7.Consequently,the PM7:Y6 has achieved PCEs as high as 17.0% by the hotcast method,due to the improved open-circuit voltage(V_(OC)).Compared with PM6,the lower HOMO of PM7 increases the gap between E_(LUMO-donor) and E_(HOMO-acceptor),which is proportional to V_(OC).This research provides a high PCE for single-junction binary PSCs,which is meaningful for device fabrication related to PM7 and commercialization of PSCs.  相似文献   

3.
A new benzodithiophene(BDT)-alt-fluorobenzotriazole(FBTA) D-A copolymer J40 was designed and synthesized by introducing 2-octyldodecyloxy side chains on its BDT units, for expanding the family of the BDT- alt-FBTA-based copolymers and investigating the side chain effect on the photovoltaic performance of the polymer in non-fullerene polymer solar cells(PSCs).J40 exhibits complementary absorption spectra and matched electronic energy levels with the n-type organic semiconductor(n-OS)(3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-sindaceno[1,2-b:5,6-b′]dithiophene)(ITIC) acceptor, and was used as polymer donor in the non-fullerene PSCs with ITIC as acceptor. The power conversion efficiency(PCE) of the PSCs based on J40:ITIC(1:1, w/w) with thermal annealing at 120 °C for 10 min reached 6.48% with a higher open-circuit voltage(Voc) of 0.89 V. The high Voc of the PSCs is benefitted from the lower-lying highest occupied molecular orbital(HOMO) energy level of J40. Although the photovoltaic performance of the polymer J40 with alkoxy side chain is lower than that of J60 and J61 with alkylthio-thienyl conjugated side chains, the PCE of6.48% for the J40-based device is still a relatively higher photovoltaic efficiency in the non-fullerene PSCs reported so far. The results indicate that the family of the BDT-alt-FBTA-based D-A copolymers are high performance polymer donor materials for non-fullerene PSCs and the side chain engineering plays an important role in the design of high performance polymer donors in the non-fullerene PSCs.  相似文献   

4.
We have designed and synthesized two wide bandgap new donor-acceptor (D-A) copolymers consisting of the same alkylthiazole-substituted benzo[1,2-b;4,5-b′]dithiophene (BDTTz) donor unit and but different acceptor units, i.e., thiazolo[5,4-d]thiazole (TTZ) ( P122 ) and 1,3,-4 thiadiazole (TDz) ( P123 ) and investigated their optical and electrochemical properties. We have employed these copolymers as donor and fullerene (PC 71 BM) and narrow bandgap non-fullerene (Y6) as acceptor, to fabricate binary and ternary bulk heterojunction polymer solar cells (PSCs). The overall power conversion efficiency (PCE) of optimized binary bulk heterojunction PSCs based on P122 :Y6 and P123 :Y6 is 12.60% and 13.16%, respectively. The higher PCE for PSCs based on P123 than P122 counterparts may be associated with the broader absorption profile of the P123 and more charge carrier mobilities than that for the P122 active layer. With the incorporation of small amount of PC71BM into either P122 :Y6 or P123 :Y6 binary blend, the corresponding ternary PSCs showed an overall PCE of 14.89% and 15.52%, respectively, which is higher than the binary counterparts using either Y6 or PC71BM as acceptor. Incorporating the PC71BM in the binary host blend increases the absorption in the 300–500 nm wavelength region, generating more excitons in the active ternary layer and helping to dissociate the excitons into free charge carriers more effectively. The more appropriate nanoscale phase separation in the active ternary layer than the binary counterpart may be one of the reasons for higher PCE.  相似文献   

5.
The medium band gap donor-acceptor(D-A) copolymer J61 based on bi(alkylthio-thienyl)benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit and thiophene as π-bridge has demonstrated excellent photovoltaic performance as donor material in nonfullerene polymer solar cells(PSCs) with narrow bandgap n-type organic semiconductor ITIC as acceptor.For studying the effect of π-bridges on the photovoltaic performance of the D-A copolymers,here we synthesized a new D-A copolymer J61-F based on the same donor and acceptor units as J61 but with furan π-bridges instead of thiophene.J61-F possesses a deeper the highest occupied molecular orbital(HOMO) level at-5.45 eV in comparison with that(-5.32 eV) of J61.The non-fullerene PSCs based on J61-F:ITIC exhibited a maximum power conversion efficiency(PCE) of 8.24%with a higher open-circuit voltage(V_(oc)) of 0.95 V,which is benefitted from the lower-lying HOMO energy level of J61-F donor material.The results indicate that main chain engineering by changing π-bridges is another effective way to tune the electronic energy levels of the conjugated D-A copolymers for the application as donor materials in non-fullerene PSCs.  相似文献   

6.
Li  Xiaojun  Ma  Ruijie  Liu  Tao  Xiao  Yiqun  Chai  Gaoda  Lu  Xinhui  Yan  He  Li  Yongfang 《中国科学:化学(英文版)》2020,63(9):1256-1261
To achieve high-efficiency polymer solar cells(PSCs), it is not only important to develop high-performance small molecule acceptors(SMAs) but also to find a matching polymer donor to achieve optimal morphology and matching electronic properties.Currently, state-of-the-art SMAs mostly rely on a donor polymer named PM6. However, as the family of SMAs continues to expend, PM6 may not be the perfect polymer donor due to the requirement of energy level matching. In this work, we tune the energy level of PM6 via the strategy of ternary copolymerization. We achieve two donor polymers(named PL-1 and PL-2) with upshifted HOMO(the highest occupied molecular orbital) energy level(compared with PM6), and can thus match with the SMAs with upshifted HOMO energy levels compared with Y6. These two copolymers exhibit slightly higher order of molecular packing and similar charge transport properties, which demonstrate that the method of ternary copolymerization can fine tune the HOMO level of donor polymers, while the morphology and mobility of the blend film remain mostly unaffected. Among them,the best device based on PL-1:Y6 exhibits power conversion efficiencies(PCEs) of 16.37% with lower open circuit voltage(Voc)but higher short circuit current voltage(Jsc) and fill factor(FF) than that of the device based on PM6:Y6. This work provides an effective approach to find polymer matches for the SMAs with upshifted HOMO levels.  相似文献   

7.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

8.
After additive and thermal annealing treatment, the PM6:Y15 based device obtains a high power conversion efficiency of 14.13%.  相似文献   

9.
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm~2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future.  相似文献   

10.
《中国化学快报》2020,31(9):2459-2464
In this article, three novel and simple molecular structure with donor-acceptor (D-A) type copolymers via only head-to-head alkoxy (OR) and/or alkylthio (SR) side chains onto the bithiophene (BT) as donor units and fluorinated benzotriazole (FBTA) as acceptor unit, namely, PBTOR-FBTA, PBTOSR-FBTA and PBTSR-FBTA, were successfully designed and synthesized. The impacts of sulfur-oxygen (S⋯O) or sulfur-sulfur (S⋯S) noncovalent interactions on their physicochemical properties, molecular stacking, carrier mobility, morphologies of blend films, as well as their photovoltaic performance were deeply and systematically studied. The introduction of SR side-chains suddenly lowered the highest occupied molecular orbital (HOMO) energy levels, blue-shifted absorption, enhanced π-π stacking, as well as improved morphology of the photoactive layer blends in comparison with the reference polymer without SR side-chain. Polymer solar cells (PSCs) were fabricated to estimate their photovoltaic performance of the polymers. Under an optimized blend ratio of PBTSR-FBTA:PC71BM (1:0.8, w/w), the PBTSR-FBTA-based device exhibits a higher power conversion efficiency (PCE) of 6.25%, which is about 3.34 and 1.87 folds than that of the PBTOR-FBTA and PBTOSR-FBTA-based devices, respectively. Our research results demonstrate that the modification of the simple and low-cost SR side chains is an effective strategy to improve the photovoltaic performance of the polymers.  相似文献   

11.
A new series of 2,1,3-benzothiadiazole (BT) acceptors with different conjugated aryl-vinylene side chains have been designed and used to build efficient low-bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2-b:3,4-b']dithiophene and the resulting new BT derivatives, three two-dimensional (2D)-like donor (D)-acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel-permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl-vinylene side chains. The copolymer with phenyl-vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D-A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6-31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]-phenyl-C(61) (C(71) )-butyric acid-methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100?mW?cm(-2) . The results showed that the device based on the copolymer with phenyl-vinylene side chains had the highest efficiency of 2.17?% with PC(71) BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll-to-roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT-based copolymers can also be achieved by fine-tuning the structures of the aryl-vinylene side chains for photovoltaic application.  相似文献   

12.
Over the past decades, polymer solar cells (PSCs) which contain conjugated polymers as electron donor and/or acceptor materials in active layers have achieved the power conversion efficiency (PCE) over 17%. Among them, tremendous alternative donor‐acceptor (D‐A) type conjugated copolymers have been reported as donor materials. Nevertheless, plenty of rooms still exist to further improve the photovoltaic performance for practical applications. Besides the exploration of the increasingly challenging novel D and/or A monomers to construct new D‐A copolymer donors, conjugated random terpolymer donors which involve a third existing monomer (D or A) provide an extra simple promising strategy to promote the photovoltaic performance to a higher level. Herein, recent progress on random terpolymer donors for efficient PSCs was reviewed. Firstly, random terpolymer donors were classified by several typical molecular building blocks. Then, the influences of the third monomer on various random terpolymers were highlighted according to the enhancement of light‐harvesting ability, modification of energy levels and optimization of the bulk‐heterojunction (BHJ) morphology. Finally, several issues which might be concerned in future research on random terpolymer donors were proposed. This review may be helpful for providing guidelines to design efficient random terpolymer donors as well as better‐understanding of the structure‐property‐performance correlations towards high performance PSCs via random terpolymer approach.  相似文献   

13.
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5, 6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三元共聚物给体材料。通过改变两个受体单元FBTz和TTz在聚合物中的摩尔比,有效调节了聚合物的光学、电化学、分子排列以及电荷传输性能。最终,使用非卤溶剂为加工溶剂,以三元共聚物PSBTZ-60为给体、ITIC为非富勒烯受体的聚合物太阳能电池(PSCs)获得了10.3%的能量转换效率(PCE),其中开路电压为0.91 V,短路电流为18.0 mA·cm−2,填充因子为62.7%;与之相比,在相同的器件制备条件下,基于PSTZ:ITIC的PSCs仅获得8.5%的PCE,基于PSBZ:ITIC的PSCs也仅获得8.1%的PCE。这些结果表明:三元无规共聚能够作为一种简单且实用的策略去设计、合成高性能聚合物光伏材料。  相似文献   

14.
Two copolymers having D‐A‐D‐A ( P1 ) and D‐A ( P2 ) structures with quinoxaline acceptor unit and dithienosilole donor unit were synthesized and their optical and electrochemical (both experimental and theoretical) properties were investigated. The optical properties showed that these copolymers P1 and P2 exhibit optical bandgaps of 1.54 and 1.62 eV, respectively, with broader absorption profiles extending up to 800 nm and 770 nm, respectively. The electrochemical investigation of these two copolymers indicates that they exhibit suitable highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels for efficient exciton dissociation and high open circuit voltage in the resultant polymer solar cells (PSCs). These copolymers were used as donors along with the PC71BM as acceptor for the fabrication of solution processed bulk heterojunction PSCs. The optimized P1 :PC71BM and P2 :PC71BM active layers treated with solvent vapor treatment showed overall power conversion efficiency (PCE) of 7.16% and 6.57%, respectively. The higher PCE of P1 ‐based device as compared to P2 might be attributed to higher crystallinity of P1 and good hole mobility resulting more balanced charge transport. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 376–386  相似文献   

15.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

16.
In this study, we fabricated a series of polymer solar cells (PSCs) incorporating blends of the maleimide?Cthiophene copolymer PTM10, multi-walled carbon nanotubes (MWCNTs) functionalized with the 2-hydroxyethyl?Cpresenting maleimide?Cthiophene copolymer PTM21-OH (PTM21-CNT), and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in various weight ratios. PTM21-CNT behaved as an efficient compatibilizer for PTM10 and PCBM and as a charge transport assister when incorporated in the photoactive layers of the PSCs. The energy levels of the lowest unoccupied molecular orbitals and highest occupied molecular orbitals in thin films of PTM10/PTM21-CNT/PCBM blends decreased upon increasing the PTM21-CNT content. The photovoltaic performance of PSCs incorporating the PTM10/PTM21-CNT/PCBM blends increased upon increasing the PTM21-CNT content, presumably because of the high charge-transporting capacity of the MWCNTs. The highest short-circuit current density and photo-energy conversion efficiency were enhanced by approximately 26% and 27%, respectively, relative to those of the PSC without the incorporation PTM21-CNT.  相似文献   

17.
18.
Developing new D-A conjugated polymer system for thermoelectric (TE) application is highly desirable. Herein, a series of random copolymers by incorporating 3,4-ethylenedioxythiophene (EDOT) electron rich units into a diketopyrrolopyrrole (DPP) D-A conjugated polymer were designed and synthesized. Compared to the alternating conjugated copolymer PDPP-3T, the HOMO level of the random copolymers are increased as part of the electron deficiency acceptor DPP units in the polymer chain were superseded by electron rich EDOT, which could contribute to effective p-doping. Moreover, through incorporating EDOT to construct random copolymers, it can also induce an orientation change from face-on dominated to edge-on dominated orientation as well as enhance the packing of copolymer chains, which is beneficial to the charge transport. Under same doping condition, the electrical conductivities of the doped polymers increase and the Seebeck coefficient decrease as the increasing of EDOT content, resulting in an optimized power factor of 6.4 μW m−1 K−2 for the random polymer with EDOT content of 40% which is four times higher than that of alternating conjugated copolymer PDPP-3T. These results demonstrated that constructing random copolymers by incorporating more electronic donors into D-A conjugated polymers may be a promising strategy for developing TE conjugated polymers.  相似文献   

19.
Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 °C for 1800 h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500 cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability.  相似文献   

20.
Chen  Sanhui  Yan  Tingting  Fanady  Billy  Song  Wei  Ge  Jinfeng  Wei  Qiang  Peng  Ruixiang  Chen  Guohui  Zou  Yingping  Ge  Ziyi 《中国科学:化学(英文版)》2020,63(7):917-923
Ternary organic solar cells(OSCs) have received extensive attention for improving the power conversion efficiency(PCE) of organic photovoltaics(OPVs). In this work, a novel donor material(ECTBD) consisting of benzodithiophene(BDT) central electron donor unit was developed and synthesized. The small molecular donor has the same central unit as PM6. The addition of ECTBD into PM6:Y6 system could improve the morphology of active blend layer. In addition, ECTBD showed good morphologically compatibility when blending with PM6:Y6 host, resulting in the improvement of fill factor and current density. As a result, the ternary devices based on PM6:ECTBD:Y6 ternary system achieved a highest PCE of 16.51% with fill factor of 76.24%, which was much higher than that of the binary devices(15.7%). Overall, this work provided an effective strategy to fabricate highly efficient ternary organic solar cells through design of the novel small molecular donor as the third component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号