首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以羟乙基纤维素为碳源,L-天冬氨酸为氮源,通过一步水热合成法制备氮掺杂碳量子点(CDs)材料.利用红外光谱(FTIR)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、荧光分光光谱仪(FS)和紫外-可见吸收光谱仪(UV-Vis)对产物进行表征分析,研究了不同氮掺杂含量和氧气对CDs的光致发光性能的影响.结果表明:制备得到的CDs材料表面富含O和N原子;掺杂N原子有效提高了CDs的荧光强度,且荧光强度随着激发波长的增大,呈现先增强后减弱的趋势;其中荧光量子产率最高达到27.5%;CDs材料在无氧环境下的荧光强度要比有氧环境下的大,表明氧气的存在对碳量子点材料表面荧光有猝灭作用.  相似文献   

2.
与传统半导体量子点相比,碳点(CDs)由于具有较强的抗光漂白性,可调的发光性能,低毒性和良好的生物相容性而引起研究者的极大兴趣。合成CDs的方法主要包括自上而下法和自下而上法。传统合成方法所制备的裸CDs由于量子产率较低,CDs形成机制不明确,应用也受到一定限制。合成过程中或合成后的修饰可有效提高CDs的量子产率和荧光性能,从而拓宽其在生物成像、探针、光催化剂、生物药物载体、光电材料等领域的应用。本文将对近年来有关CDs的几种修饰方法:形成金属纳米粒子-CDs复合物、杂原子掺杂和表面功能化的理论研究及应用加以综述,并对当前需要解决的问题以及今后的研究发展方向进行了探讨。  相似文献   

3.
分别采用原位复合和简单混合方法制备了碳点/银(CDs/Ag)复合结构.原位复合的CDs/Ag对光的吸收和对亚甲基蓝的降解都高于简单混合的CDs/Ag.研究了H2O2和碳点荧光强度对CDs/Ag原位复合结构的影响.结果表明,H2O2的加入量会改变CDs/Ag原位复合结构的形貌与光吸收,从而导致不同的光催化性能;用强荧光发射的碳点原位制备的CDs/Ag复合结构具有更好的光吸收特性和更高的光催化活性.CDs/Ag原位复合结构具有高催化活性是由于碳点与纳米银间形成了强化学键,有利于等离子共振效应发生,从而促使了光的吸收及能量转化效率的提高.  相似文献   

4.
本文采用水热合成法一步合成具有不同荧光性能的N/P-掺杂碳点。利用X-ray光电子能谱(XPS)和透射电子显微镜(TEM)对所得碳点的元素组成和微观形貌进行测试和分析。通过荧光光谱研究了不同碳点的光学性能,并考察了合成体系、碳源和掺杂情况对所得碳点荧光性能的影响。研究表明,通过加入植酸作为磷源成功实现了P-掺杂,所得碳点粒径约为2.3 nm。合成体系和碳源将影响所得碳点的荧光发射光谱和量子产率,通过P-掺杂可使其峰位发生明显移动,并改善碳点的荧光量子产率。  相似文献   

5.
荧光碳点具有良好的生物相容性和优良的抗光漂白能力,因此碳点在生物荧光成像方面的应用潜力受到广泛关注,但是碳点相对较低的荧光量子产率和缺乏近红外荧光发射的缺陷限制了碳点在荧光成像分析中的应用.随着异元素掺杂对碳点结构和荧光性质的改善,碳点被越来越广泛地用于生物成像.本文对近年来元素掺杂碳点的合成方法、异元素掺杂对碳点光学性质的影响和元素掺杂碳点在成像分析中的进展进行了综述,并对其应用前景进行了展望.  相似文献   

6.
马昱  郭宝颜  叶炜浩  刘应亮 《化学通报》2022,85(11):1282-1289
碳点(CDs)与无机材料结合可能改善两者的性能甚至出现新性能。本文重点介绍CDs以下三种性能在无机材料中的应用:利用CDs的发光性能,可将CDs与无机材料结合用于照明、防伪等;利用CDs的紫外吸收性能,可将其与无机材料结合用作紫外屏蔽剂;利用CDs的化学性能可调控无机材料的结构或增强无机材料的性能。最后,展望了CDs在无机材料中的多功能应用,以期为无机材料的创新性发展做出贡献。  相似文献   

7.
碳点(carbon dots,CDs)作为一种具有优良生物相容性、低毒性和表面功能可调的新型碳基纳米材料,在生物传感领域具有极大的应用潜力.本文对碳点的生物效应、发光性质及其发光机理进行了简述,并根据传感机制的不同,将CDs在生物传感领域的应用分为荧光(fluorescence,FL)传感器、电致发光(electroc...  相似文献   

8.
以葡萄糖为碳源,通过乙二胺与浓磷酸中和放热碳化法合成氮磷共掺杂的荧光碳点,采用元素分析、TEM、FTIR、XPS、UV-vis和PL等分析测试技术对氮磷共掺杂碳点的形貌、结构、组成和光学性质进行了表征。实验结果表明,通过氮磷共掺杂得到的碳点不仅能增强其水溶性和光学稳定性,而且能有效提高碳点的量子产率。研究发现,Co2+能强烈猝灭氮磷共掺杂碳点的荧光,且Co2+浓度在0. 005~0. 250mmol·L-1范围内时与氮磷共掺杂碳点荧光的猝灭程度呈良好的线性关系,检出限为0. 6μmol·L-1。因此,建立了一种检测Co2+的荧光传感方法,该方法具有简单、快速、选择性高等优点。  相似文献   

9.
本文以蜡烛灰为碳源,在强酸环境中超声法一步合成了粒径均匀的荧光碳点(CDs),粒径(3.47±1.81)nm,在紫外灯照射下发出黄绿色荧光.研究表明,CDs表面带有-OH、C=O和-COOH等官能团,存在sp3杂化和sp2杂化两种碳原子.所合成的碳点具有良好的耐光漂白能力和生物相容性,能潜在地作为黄绿色荧光成像试剂应用于细胞成像.  相似文献   

10.
光学传感器因其卓越的选择性、灵敏度、稳定性和经济性等优点一直受到科学家的关注.碳点(CDs)是由大量天然和人工碳源材料通过多种方法合成的,可以通过掺杂进行化学调谐来实现所需的传感特性.许多基于CDs的可视化传感器已被报道,可用于高选择性、高灵敏度地检测多种离子和分子,并为现场快速检测设备提供了理论基础.本文综述了碳点作为可视化传感器的传感机理及应用,并探讨了其在公共安全分析领域中的应用潜能.  相似文献   

11.
The hydrothermal treatment of green carbon dots (CDs) is an appropriate fluorescent probe synthesis method. CDs are exploited as biological staining agents, especially for cellular detection and imaging. The nitrogen-doped green carbon dots (N-CDs) formation can improve the fluorescence intensity property in a one-step process. Here, we report two N-CDs from lemon and tomato extraction in the presence of hydroxylamine. Lemon and tomato N-CDs showed the blue fluorescence under ultraviolet radiation of about 360 nm. The characterization of CDs and N-CDs showed the presence of N-H and C–N bonds which enhanced the fluorescence efficiency. The mean size of lemon and tomato N-CDs were about 2 and 3 nm with an increased quantum yield (QY) of 5% and 3.38%, respectively. The CDs and N-CDs cytotoxicity assay exhibited high cell viability approximately 85% and 73%, respectively. N-CDs show superior fluorescent intensity in different solvents and significant stability under long-time UV irradiation, different PH and high ionic strength. Our results indicated that the use of N-CDs in cell imaging can lead to fluorescence intensity enhancement as well as proper biocompatibility. Therefore, the safe and high fluorescence intensity of green N-CDs can be utilized for fluorescent probes in biolabeling and bioimaging applications.  相似文献   

12.
Carbon dots(CDs) with multi-color emissive properties and a high photoluminescent quantum yield(PLQY) have attracted great attention recently due to their potential applications in chemical,environmental,biological and photo-electronic fields.Solvent-dependent effect in photoluminescence provides a facial and effective approach to tune the emission of CDs.In this study,green emissive nitrogen-doped carbon dots(N-CDs) are synthesized from p-hydroquinone and ethylenediamine through a simple hydrothermal method.The as-prepared N-CDs possess a robust excitation-independent green luminescence and a high PLQY of up to 15.9%.Further spectroscopic characterization indicates that the high PLQY is achieved by the balance of nitrogen doping states and the surface passivation extent in CDs.The N-CDs also exhibit solvent-dependent multi-color emissive property and distinct PLQY in different solvents(the maximum can reach up to 25.3%).Furthermore,the as-prepared N-CDs are applied as fluorescence probes to detect acetone and H2O2 in water.This method has exhibited a low detection limit of acetone(less than 0.1 %) and a quick and linear response to the H_2O_2 with the concentration from 0 to 120 μmol/L.This work broadens the knowledge of applying CDs as probes in the bio and chemical sensing fields.  相似文献   

13.
《中国化学快报》2021,32(11):3646-3651
Up to date, solid-state carbon dots (CDs) with bright red fluorescence have scarcely achieved due to aggregation-caused quenching (ACQ) effect and extremely low quantum yield in deep-red to near infrared region. Here, we report a novel fluorine-defects induced solid-state red fluorescence (λem = 676 nm, the absolute fluorescence quantum yields is 4.17%) in fluorine, nitrogen and sulfur co-doped CDs (F,N,S-CDs), which is the first report of such a long wavelength emission of solid-state CDs. As a control, CDs without fluorine-doping (N,S-CDs) show no fluorescence in solid-state, and the fluorescence quantum yield/emission wavelength of N,S-CDs in solution-state are also lower/shorter than that of F,N,S-CDs, which is mainly due to the F-induced defect traps on the surface/edge of F,N,S-CDs. Moreover, the solid-state F,N,S-CDs exhibit an interesting temperature-sensitive behavior in the range of 80–420 K, with the maximum fluorescence intensity at 120 K, unveiling its potential as the temperature-dependent fluorescent sensor and the solid-state light-emitting device adapted to multiple temperatures.  相似文献   

14.
A facile and eco-friendly approach to prepare nitrogen(N)- and sulfur(S)-doped carbon dots (CDs) by one step microwave-assisted pyrolysis of the precursors with dl-malic acid as carbon source, ethanolamine and ethane-sulfonic acid as N and S dopants, respectively, was reported. Through the extensive investigation on morphology, chemical structures and optical properties of the carbon dots, it was found that the obtained CDs exhibited good luminescence stability, high resistance to photo bleaching and favorite solubility. Compared with undoped CDs, adding the N or S dopant could give rise to a slightly smaller particle size and a long fluorescence lifetime of CDs. Moreover, the optimal N-CDs was successfully employed as good multicolor cell imaging probes due to its fine dispersion in water, excitation-dependent emission, excellent biocompatibility and low toxicity. Besides, such N-CDs showed a wide detection range and excellent accuracy as fluorescent probe for Fe3+ ions. This probe enabled the selective detection of Fe3+ ions with a linear range of 6.0–200 μM and a limit of detection of 0.80 μM.  相似文献   

15.
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs. The resulting N, S-CDs exhibited nanoscale size (6.2 nm), abundant functional groups, bright blue fluorescence, high quantum yield (QY = 27.4%), and high overall yield (16.2%). The excellent optical properties of N, S-CDs endowed it to potentially display a highly sensitive fluorescence “turn off” response to rutin. The fluorescence response for rutin allowed a wide linear range of 0–40 mg·L−1, with a limit of detection (LOD) of 0.02 μM, which revealed the potential of N, S-CDs as a rapid and simple sensing platform for rutin detection. In addition, the sustainable and large-scale production of the N, S-CDs in this study paves the way for the successful high-value utilization of cellulose.  相似文献   

16.
Carbon dots have unique advantages in biological applications owing to their excellent optical prope rties.However,the biosafety evaluation of carbon dots has limitations owing to cytotoxicity in vitro,and the re is little pre-safety evaluation before in vivo and clinical applications.Whether the carbon dots are or not suitable for applications in vivo,evaluation analysis can be made based on hemolysis and changes in erythrocyte morphology.In this work,a green fluorescent N,S-doped carbon dots(N,S-CDs)were obtained by hydrothermal method,tobias acid,and m-phenylenediamine as precursors.N,S-CDs not only possessed excellent dispersibility,uniform particle size,high quantum yield(37.2%)and stable photoluminescence property but also retain their photostability and stro ng fluorescence intensity in the acid/alkaline solutions,different ionic strengths(NaCl)and under 365 nm UV illumination.Moreove r,the N,S-CDs displayed low cytotoxicity and high cellular uptake efficiency in human umbilical vein endothelial cells(HUVEC)and excellent blood compatibility to the erythrocyte.It is foreseeable that N,S-CDs could be further studied as a promising biological imaging agent in vivo.  相似文献   

17.
以生物质(合果芋叶片)、 十二水合硫酸铁铵和脲为原料, 采用水热法制备了铁、 氮共掺杂碳点(Fe,N-CDs), 采用透射电子显微镜和X射线光电子能谱对其形貌与元素组成进行了表征. 该Fe,N-CDs既具有类过氧化物酶活性, 也能在450 nm处产生强荧光发射. 以Fe,N-CDs和邻苯二胺(OPD)为探针, 建立了一种比色/比率荧光测定双氧水(H2O2)的双信号方法. 在H2O2存在下, Fe,N-CDs催化OPD氧化成黄色的2,3-二氨基吩嗪(DAP), DAP在420 nm处有1个特征吸收峰. 在360 nm波长光的激发下, DAP在550 nm处有强荧光发射; 由于荧光内滤效应, DAP又可猝灭Fe,N-CDs在450 nm处的荧光. 基于此, DAP在420 nm处的吸光度(A420)及DAP与Fe,N-CDs的荧光强度比(I550/I450)均可用于H2O2的定量分析. 考虑到葡萄糖氧化酶能催化葡萄糖氧化生成H2O2, 进一步发展了一种比色/比率荧光双信号葡萄糖测定方法. 在pH=5.4, 温度40 ℃, 1.75 mmol/L OPD及反应时间25 min的条件下, 当葡萄糖浓度在1.0~100 μmol/L范围内时, A420I550/I450值与浓度呈良好的线性关系, 方法的检出限分别为0.8(比色)和0.6 μmol/L(比率荧光). 将该方法成功应用于人体血清中葡萄糖的测定.  相似文献   

18.
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV–vis, fluorescence, circular dichroism (CD) spectroscopy, UV-melting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation. The fluorescence quenching of TB by ctDNA was static and due to electron transfer from bases to the excited singlet state of TB. At low [TB]/[DNA] ratio, TB mainly partially intercalated into ctDNA resulting in the slight increase of base stacking degree; at high [TB]/[DNA] ratio, excessive TB externally stacked along the helix surface via coupling with partially intercalated ones, thereby inducing B-A transition of ctDNA. The conformational transition of DNA was confirmed by the obvious improvement of the thermal stability of ctDNA. The SERS spectra suggest that TB could partially intercalate into DNA basepairs with its ring C1NC1′ side buried.  相似文献   

19.
Carbon dots (CDs) have become one of the most emerging materials as an alternative solar light-induced photocatalyst in contrast to traditional metal-based systems. However, one of the major challenges is the lack of visible light absorption. Herein, we have fabricated unique N, P-co-doped CDs with a self-assembled onion-like layered structure by using a bottom-up facile synthesis technique from chitosan gel and phosphoric acid as molecular precursors. This typical layered structure of N, P-co-doped carbon nano onions (N, P-CNOs), with an average size of 25–50 nm, displays an enhanced visible light absorption. Detailed structural and elemental characterizations confirm the extensive aromatic domain with P-containing surface functionalities, while electrochemical study clarifies the lowering of band gaps as well as the creation of new electronic states in comparison to the pristine N-CDs. Furthermore, the intrinsic structural features are correlated with the underpinning photophysical processes by steady-state and time-resolved fluorescence spectroscopy. In addition, steady-state polarized emission and thermo-responsive PL properties have been carried out to unveil further the structure-property correlation of N, P-CNOs, and their comparative study with pristine N-CDs at the different excitation wavelengths. Finally, N, P-CNOs exhibit efficient visible-light-induced photocatalysis, and the detailed mechanistic study is carried out by trapping the photogenerated species in an aqueous medium. The prepared N, P-CNOs displayed an excellent visible-light photocatalytic performance over MB dye with a degradation efficiency of 75.8% within 120 min along with a degradation rate constant of ∼0.0109 min−1. It is concluded that the easy to synthesize and low-cost N, P-CNOs with a unique morphology hold great potential for application in visible-light photocatalysis.  相似文献   

20.
In weak acidic medium, interaction between papain and calf thymus DNA (ctDNA) resulted in absorption spectral change, fluorescence quenching of papain and remarkable enhancement of resonance Rayleigh scattering (RRS). The interaction types and binding modes were discussed by characteristics of RRS, absorption, fluorescence and circular dichroism spectra combining thermodynamic data. Four interaction types include electrostatic attraction, hydrophobic force, hydrogen bonding and aromatic stacking interaction. Papain interacted with the major groove of ctDNA. Aromatic stacking interaction is the main reason of change of absorption spectrum and fluorescence quenching of papain. Surface enhanced scattering effect, resonance energy transfer effect, increase of molecular volume and conformational change make contribution to RRS enhancement. The enhanced RRS intensity (ΔI) is directly proportional to the concentration of ctDNA or papain. The detection limit (3σ) is 5.2 ng·mL?1 for ctDNA and 5.6 ng·mL?1 for papain. This creates conditions for determination of papain and ctDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号