首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gao  Jinhua  Wang  Jian  An  Qiaoshi  Ma  Xiaoling  Hu  Zhenghao  Xu  Chunyu  Zhang  Xiaoli  Zhang  Fujun 《中国科学:化学(英文版)》2020,63(1):83-91
Ternary organic photovoltaics(OPVs) are fabricated with PBDB-T-2 Cl:Y6(1:1.2, wt/wt) as the host system and extra PC_(71)BM as the third component. The PBDB-T-2 Cl:Y6 based binary OPVs exhibit a power conversion efficiency(PCE) of 15.49% with a short circuit current(J_(SC)) of 24.98 m A cm~(-2), an open circuit voltage(V_(OC)) of 0.868 V and a fill factor(FF) of 71.42%. A 16.71%PCE is obtained in the optimized ternary OPVs with PBDB-T-2 Cl:Y6:PC_(71)BM(1:1.2:0.2, wt/wt) active layer, resulting from the synchronously improved J_(SC) of 25.44 m A cm~(-2), FF of 75.66% and the constant V_(OC)of 0.868 V. The incorporated PC_(71)BM may prefer to mix with Y6 to finely adjust phase separation, domain size and molecular arrangement in ternary active layers, which can be confirmed from the characterization on morphology, 2 D grazing incidence small and wide-angle X-ray scattering, as well as Raman mapping. In addition, PC_(71)BM may prefer to mix with Y6 to form efficient electron transport channels, which should be conducive to charge transport and collection in the optimized ternary OPVs. This work provides more insight into the underlying reasons of the third component on performance improvement of ternary OPVs, indicating ternary strategy should be an efficient method to optimize active layers for synchronously improving photon harvesting, exciton dissociation and charge transport, while keeping the simple cell fabrication technology.  相似文献   

2.
Recombining the advantages on photovoltaic parameters of two binary-organic photovoltaics (OPVs) into one ternary cell is an efficient strategy for selecting materials, in addition to the absorption spectra complementary among the used materials. The binary-OPVs with J71:BTP-4F-12 exhibit a power conversion efficiency (PCE) of 11.70%, along with a short-circuit-current-density (JSC) of 23.61 mA cm−2, an open-circuit-voltage (VOC) of 0.841 V and a fill factor (FF) of 58.99%. Although the relatively low PCE of 10.92% and JSC of 16.59 mA cm−2 are achieved in J71:ITIC-based binary-OPVs, the VOC of 0.935 V and FF of 70.40% are impressive compared with J71:BTP-4F-12-based OPVs. Optimal ternary-OPVs are achieved with J71:BTP-4F-12:ITIC as active layers by weight ratio of 1:0.48:0.72, delivering a markedly increased PCE of 13.05% with a VOC of 0.903 V, a JSC of 21.27 mA cm−2 and a FF of 68.20%. An over 11.5% PCE improvement is obtained by recombining the advantages of binary-OPVs into ternary-OPVs with ITIC as photon harvesting reinforcing agent and morphology regulator. The good compatibility between BTP-4F-12 and ITIC provides large room to well optimize their relative content for achieving the well balanced three key photovoltaic parameters of ternary-OPVs.  相似文献   

3.
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.  相似文献   

4.
Although organic photovoltaic devices (OPVs) have been investigated for more than two decades, the power conversion efficiencies of OPVs are much lower than those of inorganic or perovskite solar cells. One effective approach to improve the efficiency of OPVs is to introduce additives to enhance light harvesting as well as charge transportation in the devices. Here, black phosphorus quantum dots (BPQDs) are introduced in OPVs as an additive. By adding 0.055 wt % BPQDs relative to the polymer donors in the OPVs, the device efficiencies can be dramatically improved for more than 10 %. The weight percentage is much lower than that of any other additive used in OPVs before, which is mainly due to the two‐dimentional structure as well as the strong broadband light absorption and scattering of the BPQDs. This work paves a way for using two‐dimentional quantum dots in OPVs as a cost‐effective approach to enhance device efficiencies.  相似文献   

5.
With the rapid development of the Internet of Things (IoTs), photovoltaics (PVs) has a vast market supply gap of billion dollars. Moreover, it also puts forward new requirements for the development of indoor photovoltaic devices (IPVs). In recent years, PVs represented by organic photovoltaic cells (OPVs), silicon solar cells, dye-sensitized solar cells (DSSCs), etc. considered for use in IoTs mechanisms have also been extensively investigated. However, there are few reports on the indoor applications of perovskite devices, even though it has the advantages of better performance. In fact, perovskite has the advantages of better bandgap adjustability, lower cost, and easier preparation of large-area on flexible substrates, compared with other types of IPVs. This review starts from the development status of IoTs and investigates the cost, technology, and future trends of IPVs. We believe that perovskite photovoltaics is more suitable for indoor applications and review some strategies for fabricating high-performance perovskite indoor photovoltaic devices (IPVs). Finally, we also put forward a perspective for the long-term development of perovskite IPVs.

With the rapid development of the Internet of Things (IoTs), photovoltaics (PVs) has a vast market supply gap of billion dollars.  相似文献   

6.
With the emergence of Y-series small molecule acceptors, polymerizing the small molecule acceptors with aromatic linker units has attracted significant research attention, which has greatly advanced the photovoltaic performance of all-polymer solar cells. Despite the rapid increase in efficiency, the unique characteristics (e. g., mechanical stretchability and flexibility) of all-polymer systems were still not thoroughly explored. In this work, we demonstrate an effective approach to simultaneously improve device performance, stability, and mechanical robustness of all-polymer solar cells by properly suppressing the aggregation and crystallization behaviors of polymerized Y-series acceptors. Strikingly, when introducing 50 wt% PYF-IT (a fluorinated version of PY-IT) into the well-known PM6:PY-IT system, the all-polymer devices delivered an impressive photovoltaic efficiency of 16.6%, significantly higher than that of the control binary cell (15.0%). Compared with the two binary systems, the optimal ternary blend exhibits more efficient charge separation and balanced charge transport accompanying with less recombination. Moreover, a high-performance 1.0 cm2 large-area device of 15% efficiency was demonstrated for the optimized ternary all-polymer blend, which offered a desirable PCE of 14.5% on flexible substrates and improved mechanical flexibility after bending 1000 cycles. Notably, these are among the best results for 1.0 cm2 all-polymer OPVs thus far. This work also heralds a bright future of all-polymer systems for flexible wearable energy-harvesting applications.   相似文献   

7.
通过热蒸发在ITO阳极和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)层之间引入一层聚四氟乙烯(PTFE)缓冲层,研究聚四氟乙烯缓冲层对基于聚3-己基噻吩:6,6-苯基-C61丁酸甲酯(P3HT:PCBM)的有机光伏器件光电特性影响。与使用PEDOT:PSS作为缓冲层的器件相比,使用聚四氟乙烯缓冲层的有机光伏器件开路电压、短路电流和光电转换效率均有所提高。器件光电性能提高的原因是由于PTFE缓冲层大量带负电荷的氟离子在ITO/PTFE界面处形成偶极子层, 改善了内建电场,从而使得空穴电荷的收集更加有利。  相似文献   

8.
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.  相似文献   

9.
Organic photovoltaics (OPVs) have emerged as a promising next-generation technology with great potential for portable, wearable, and transparent photovoltaic applications. Over the past few decades, remarkable advances have been made in non-fullerene acceptor (NFA)-based OPVs, with their power conversion efficiency exceeding 18%, which is close to the requirements for commercial realization. Novel molecular NFA designs have emerged and evolved in the progress of understanding the physical features of NFA-based OPVs in relation to their high performance, while there is room for further improvement. In this review, the molecular design of representative NFAs is described, and their blend characteristics are assessed via statistical comparisons. Meanwhile, the current understanding of photocurrent generation is reviewed along with the significant physical features observed in high-performance NFA-based OPVs, while the challenging issues and the strategic perspectives for the commercialization of OPV technology are also discussed.

This review describes the current understandings and the significant features observed in NFA-based OPVs, with a particular focus on photophysical, electrical, and morphological characteristics.  相似文献   

10.
The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies.  相似文献   

11.
Chen  Sanhui  Yan  Tingting  Fanady  Billy  Song  Wei  Ge  Jinfeng  Wei  Qiang  Peng  Ruixiang  Chen  Guohui  Zou  Yingping  Ge  Ziyi 《中国科学:化学(英文版)》2020,63(7):917-923
Ternary organic solar cells(OSCs) have received extensive attention for improving the power conversion efficiency(PCE) of organic photovoltaics(OPVs). In this work, a novel donor material(ECTBD) consisting of benzodithiophene(BDT) central electron donor unit was developed and synthesized. The small molecular donor has the same central unit as PM6. The addition of ECTBD into PM6:Y6 system could improve the morphology of active blend layer. In addition, ECTBD showed good morphologically compatibility when blending with PM6:Y6 host, resulting in the improvement of fill factor and current density. As a result, the ternary devices based on PM6:ECTBD:Y6 ternary system achieved a highest PCE of 16.51% with fill factor of 76.24%, which was much higher than that of the binary devices(15.7%). Overall, this work provided an effective strategy to fabricate highly efficient ternary organic solar cells through design of the novel small molecular donor as the third component.  相似文献   

12.
喹喔啉衍生物由于合成简单,易功能化,成本较低等特点在众多领域都有广泛应用。其自身具有平面刚性结构,也是构建光电聚合物的重要单体。基于喹喔啉单元的有机分子化学结构和电子结构可修饰性强,通过骨架、侧链和取代基等修饰,易于调控分子的能级和吸光光谱,因此,当使用喹喔啉体系的共轭给体与球形富勒烯受体(如PCBM)及弱结晶性非富勒烯受体(如ITIC)均可表现出优异的光伏性能。在本工作中,基于结晶性较强的非富勒烯受体(o-IDTBR),我们首次制备出侧链不对称喹喔啉(简称:不对称喹喔啉)基聚合物(TPQ-1)与之匹配。相比于侧链对称性喹喔啉(简称:对称喹喔啉)(HFQx-T)与o-IDTBR组合,“弱结晶给体-强结晶受体”组合能表现出更佳均匀的相分离尺度,从而获得更高的短路电流及能量转换效率。TPQ-1与o-IDTBR共混后器件效率为8.6%,加入15%的TB7-Th后,器件效率达到9.6%。  相似文献   

13.
Lin Y  Li Y  Zhan X 《Chemical Society reviews》2012,41(11):4245-4272
Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).  相似文献   

14.
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.  相似文献   

15.
A new alternating copolymer of dithienosilole and thienopyrrole-4,6-dione (PDTSTPD) possesses both a low optical bandgap (1.73 eV) and a deep highest occupied molecular orbital energy level (5.57 eV). The introduction of branched alkyl chains to the dithienosilole unit was found to be critical for the improvement of the polymer solubility. When blended with PC(71)BM, PDTSTPD exhibited a power conversion efficiency of 7.3% on the photovoltaic devices with an active area of 1 cm(2).  相似文献   

16.
《先进技术聚合物》2018,29(2):914-920
Doping a low‐bandgap polymer material (PDTBDT‐DTNT) as a complementary electron donor in poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyricacid methyl ester (PC61BM) blend is experimented to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The PCE of OSCs was increased from 3.19% to 3.75% by doping 10 wt% PDTBDT‐DTNT, which was 17.55% higher than that of the OSCs based on binary blend of P3HT:PC61BM (host cells). The short‐circuit current density (Jsc) was increased to 10.11 mA·cm−2 compared with the host cells. Although the PCE improvement could partly be attributed to more photon harvest for complementary absorption of 2 donors by doping appropriate PDTBDT‐DTNT, the promotion of charge separation and transport as well as the suppression of charge recombination due to a matrix of cascade energy levels is also important. And the better morphology of the active layer films is beneficial to the optimized performance of ternary devices.  相似文献   

17.
With the rapid progress achieved by all-polymer solar cells (all-PSCs), wide-bandgap copolymers have attracted intensive attention for their unique advantage of constructing complementary absorption profiles with conventional narrow-bandgap copolymers. In this work, we designed and synthesized a wide bandgap ternary copolymer PEG-2% which has the benzodithiophene-alt-difluorobenzotriazole as the backbone and the polyethylene glycol (PEG) modified side chain. The PBTA-PEG-2%:N2200 can be processed with a non-chlorinated solvent of 2-methyl-tetrahydrofuran (MeTHF) for the binary all-PSC, which exhibits a moderate photovoltaic performance. In particular, the ternary all-PSCs that consisting an additional narrow bandgap polymer donor PTB7-Th can also be processed with MeTHF, resulting in an unprecedented power conversion efficiency (PCE) of 9.27%, and a high PCE of 8.05% can be achieved with active layer thickness of 240 nm, both of which are the highest values so far reported from all-PSCs. Detailed investigations revealed that the dramatically improved device performances are attributable to the well-extended absorption band in the photoactive layer. Hence, developing novel copolymers with tailored side chains, and introducing additional polymeric components, can broaden the horizon for high-performance all-PSCs.  相似文献   

18.
The large D core of DFPCBR results in efficient P3HT-based OSCs with a high VOC and thickness insensitivity.  相似文献   

19.
Active layers in many thin‐film organic photovoltaic devices (OPVs) contain light‐absorbing polymers that serve as electron donors, mixed with appropriate electron acceptors. In principle, the polymers can be replaced by small molecules with suitable bandgaps, which offer multiple advantages, including well‐defined structures and methods of synthesis and purification that provide uniform samples. However, such materials often undergo separation of phases and crystallization, so making long‐lived films that remain smooth, homogeneous, flexible, and transparent is not easy. We have found that effective OPVs can be made by dispersing mixtures of low‐bandgap push–pull small molecules as electron donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as electron acceptor in matrices of optoelectronically passive conventional polymers, including polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(ethylene glycol), and poly(dimethylsiloxane). By varying the identity of the matrix, its molecular weight, the loading of active components, and the conditions of annealing, we have produced efficient OPVs from components that would otherwise have undergone phase separation and crystallization, leading to poor performance. Layers with up to 35% matrix were found to be effective and could be fabricated at room temperature by simple processes. To probe the role of the polymers as dispersants, morphologies of composite films were examined by atomic force microscopy and electron microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1479–1492  相似文献   

20.
A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号