首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-dimensional response of sandwich plates to underwater shock loading   总被引:5,自引:0,他引:5  
The one-dimensional shock response of sandwich plates is investigated for the case of identical face sheets separated by a compressible foam core. The dynamic response of the sandwich plates is analysed for front face impulsive loading, and the effect of strain hardening of the core material is determined. For realistic ratios of core mass to face sheet mass, it is found that the strain hardening capacity of the core has a negligible effect upon the average through-thickness compressive strain developed within the core. Consequently, it suffices to model the core as an ideally plastic-locking solid. The one-dimensional response of sandwich plates subjected to an underwater pressure pulse is investigated by both a lumped parameter model and a finite element (FE) model. Unlike the monolithic plate case, cavitation does not occur at the fluid-structure interface, and the sandwich plates remain loaded by fluid until the end of the core compression phase. The momentum transmitted to the sandwich plate increases with increasing core strength, suggesting that weak sandwich cores may enhance the underwater shock resistance of sandwich plates.  相似文献   

2.
从有限元分析和数值模拟及实验验证的角度研究了黏弹夹芯板的频率依赖振动特性。夹芯板中间层为黏弹性材料,其刚度和阻尼的频率依赖性行为直接影响系统的模态频率和阻尼,并导致振动模式求解的复杂化。采用三阶七参数Biot模型描述黏弹性材料频率相关的黏弹性行为。开发了三层四节点28自由度的夹芯板单元,基于经典板理论和哈密顿原理建立了黏弹夹芯板的有限元动力学方程。通过引入辅助耗散坐标,将Biot模型和黏弹夹芯板的有限元动力学模型结合起来,并将其转化为常规二阶线性系统形式,极大简化了求解非线性振动特性的过程。对一边固定、另三边自由的黏弹夹芯板进行了前三阶固有频率和损耗因子的预测,并与实验结果对比。数值模拟结果和实验结果吻合良好,说明所提有限元方法是正确有效的。  相似文献   

3.
多孔金属夹层板在冲击载荷作用下的动态响应   总被引:14,自引:4,他引:10  
赵桂平  卢天健 《力学学报》2008,40(2):194-206
借助两种有限元软件ABAQUS和LS_DYNA, 模拟和分析了两种厚度不同的泡沫铝合金夹层板(三明治板)、方孔蜂窝形夹层板和波纹形夹层板在冲击载荷下的动态响应. 4种夹层板的单位面积密度相同,冲击载荷分别用泡沫铝子弹与不锈钢子弹模拟. 讨论了泡沫金属夹层板和格构式夹层板在不同冲击载荷作用下的变形机制,重点在于对夹层板的吸能特性及板内各部分吸能变化规律的探讨.研究结果表明: 在泡沫子弹冲击下,夹层板主要是通过自身变形来消耗子弹动能,并转化为自身内能. 厚度为22\,mm的泡沫金属夹层板吸收能量最多,底面变形最小,是结构性能最优的夹层板;在刚性子弹高速冲击穿透过程中,格构式夹层板的吸能性能比单位面积密度相同的泡沫金属夹层板的吸能性能更好. 波纹形夹层板的能量吸收能力在4种板中最高.   相似文献   

4.
An efficient model reduction based methodology is presented for predicting the global (impact force, plate deflection and electric potential) and through-thickness local (interfacial strains and stresses) dynamic response of pristine simply-supported cross-ply composite and sandwich composite plates with piezoelectric sensory layers subjected to low-energy impact. The through-thickness response of the laminate is modelled using coupled higher-order layerwise displacement-based piezoelectric laminate theories. Linearized contact laws are implemented for simulating the impactor–target interaction during impact. The stiffness, mass, piezoelectric and permittivity matrices of the plate are formulated from ply to structural level and reduced by applying a Guyan reduction technique to yield the structural system in state space. This reduction technique enables the formulation of a plate–impactor structural system of minimum size (1 term per vibration mode for composite plates – 2 terms for sandwich plates) and reduces computational cost, thus facilitating applicability for real-time impact and vibration control.  相似文献   

5.
以复合板中面的挠度响应作为不锈钢复合板抗冲击性能的评价指标,基于能量法和经典层合板理论,考虑层间结构参数设计,通过横向载荷下的弯曲平衡微分方程,建立冰载荷下不锈钢复合板挠度响应简化解析模型。该分析模型将整个动态响应分析过程分为冰载荷计算分析和动力学方程求解两个阶段。分析了冰载荷模型的面倾角、冲击速度和碰撞位置对冰载荷的影响,确定极端工况参数,汇总接触面的节点力数据;分析了层厚比对挠度响应的影响规律;基于LS-DYNA有限元仿真以及数值算例分析,对比挠度响应仿真结果和解析计算值,验证了本文简化解析模型的准确性,研究结果对不锈钢复合板抗冲击性能分析和评估具有一定的参考价值。  相似文献   

6.
The finite element dynamic model of a honeycomb sandwich plate is presented using different mesh division for the surface plates and the sandwich plate to accurately express the crack damage status of the plate. The experimental measurements of plate natural frequency and dynamic responses are carried out for dynamic model verification. The feasibility of detecting small crack damage according to structural natural frequency and dynamic responses is evaluated. The results show that the energy spectrum of the decomposed wavelet signals of dynamic responses has a higher sensitivity to small crack damage, and more high order modes should be included in the dynamic model for structural damage detection.  相似文献   

7.
In a recent paper, Cho and Kim [Journal of Applied Mechanics] proposed a higher-order cubic zigzag theory of laminated composites with multiple delaminations. The proposed theory is not only accurate but also efficient because it work with a minimal number of degrees of freedom with the application of interface continuity conditions as well as bounding surface conditions of transverse shear stresses including delaminated interfaces. In this work, we investigate the dynamic behavior of laminated composite plates with multiple delaminations. A four-node finite element based on the efficient higher-order zigzag plate theory of laminated composite plates with multiple delaminations is developed to refine the prediction of frequencies, mode shape, and time response. Through the dynamic version of the variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Natural frequency prediction and time response analysis of a composite plate with multiple delaminations demonstrate the accuracy and efficiency of the present finite element method. To prevent penetration violation at the delamination interfaces, unilateral contact constraints by Lagrange multiplier method are applied in the time response analysis. The present finite element is suitable for the prediction of dynamic response of thick composite plates with multiple and arbitrary shaped delaminations.  相似文献   

8.
复合材料层压板低速冲击响应尺度效应数值模拟研究   总被引:1,自引:0,他引:1  
为了研究尺度效应对于复合材料层压板在低速冲击作用下的动态响应和冲击损伤的影响,基于相似理论,建立了三种不同尺寸的层压板受冲击的三维有限元模型。在该模型中,针对层压板的面内损伤,采用改进的Chang-Chang准则进行预测;针对层压板内层间分层损伤,则使用Cohesive界面单元进行模拟。一旦复合材料层压板在低速冲击作用下产生损伤,则对出现损伤的区域进行材料参数退化。采用该模型对三种不同尺寸的层压板的冲击过程进行有限元分析,并将不同冲击速度下的冲击响应进行比较,得出了如下结论:在层压板内未发生冲击损伤时,冲击产生的挠度和冲击力与相似理论解十分吻合,一旦出现冲击损伤,则冲击力的变化与相似理论解有所差别;如果两个缩放模型的冲击速度之比等于缩放比例的平方根,则两个模型中的相对分层尺寸基本是相同的,这个结果与已有的实验结果吻合;而对冲击后面内损伤的分析表明,其损伤尺寸不符合这一相似规律。  相似文献   

9.
We present a new experimental technique to allow laboratory-scale observation of underwater blast loading on circular plates, including dynamic deformation and failure of the plates as well as the sequence of cavitation events in water. The apparatus is used to measure and compare the responses of a quasi-isotropic glass/vinylester composite and of a woven carbon/epoxy plate. Dynamic explicit FE simulations are conducted and their predictions are found in good agreement with experiments. Measurements and FE predictions are used to validate a recently developed theoretical model for the response of elastic orthotropic plates to underwater blast.  相似文献   

10.
The dynamic behavior of partially delaminated at the skin/core interface sandwich plates with flexible cores is studied. The commercial finite element code ABAQUS is used to calculate natural frequencies and mode shapes of the sandwich plates containing a debonding zone. The influence of the debonding size, debonding location and types of debonding on the modal parameters of damaged sandwich plates with various boundary conditions is investigated. The results of dynamic analysis illustrated that they can be useful for analyzing practical problems related to the non-destructive damage detection of partially debonded sandwich plates.  相似文献   

11.
The dynamic response of fully clamped, monolithic and sandwich plates of equal areal mass has been measured by loading rectangular plates over a central patch with metal foam projectiles. All plates are made from AISI 304 stainless steel, and the sandwich topologies comprise two identical face-sheets and either Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. At low levels of projectile momentum both types of sandwich plate deflect less than monolithic plates of equal areal mass. However, at higher levels of projectile momentum, the sandwich plates tear while the monolithic plates remain intact. Three-dimensional finite element (FE) calculations adequately predict the measured responses, prior to the onset of tearing. These calculations also reveal that the accumulated plastic strains in the front face of the sandwich plates exceed those in the monolithic plates. These high plastic strains lead to failure of the front face sheets of the sandwich plates at lower values of projectile momentum than for the equivalent monolithic plates.  相似文献   

12.
I. INTRODUCTION Composite materials have been used extensively in aerospace and other industries owing to the factthat they have high speci?c modulus, high speci?c strength, and the capability to be designed andfabricated with greater ?exibility, and ha…  相似文献   

13.
An efficient numerical method is developed for the simulation of three dimensional transient dynamic response in thick laminated composite and sandwich plate structures involving very high frequencies and wave numbers. The proposed method incorporates Daubechies wavelet scaling functions for the interpolation of the in-plane displacements with a Galerkin formulation. It further explores the orthonormality and compact support of wavelet scaling functions to produce near diagonal consistent mass matrices and banded stiffness matrices. Hence, an uncoupled equivalent discrete spatial dynamic system is formulated, synthesized and rapidly solved in the wavelet domain using an explicit time integration scheme. The in-plane wavelet interpolation is further combined with an efficient high order layerwise laminate plate theory, that implements Hermite cubic splines for the through-the-thickness approximation of displacement fields. Numerical results are presented on the prediction of guided waves in laminated and thick sandwich composite plates and compared with respective solutions obtained by analytical, semi-analytical and time domain spectral element models. The method yielded higher convergence rates and substantial reductions in computational effort compared to respective time domain spectral finite elements.  相似文献   

14.
The finite element (FE) method is employed to analyse the response of clamped sandwich beams subject to shock loadings. Pressure versus time histories representative of shock loadings are applied uniformly to the outer face of the sandwich beam; an impulse applied uniformly to the outer face of the sandwich beam is shown to model adequately shock loadings. Material elasticity and strain hardening representative of structural steels have only a minor effect upon the beam response. Further, the magnitude of the compressive strength of the core has only a limited influence upon the dynamic response of the sandwich beam for the representative range of core strengths considered. The FE results for the deflections and structural response time agree well with the rigid ideally-plastic analytical predictions of Fleck and Deshpande (J. Appl. Mech. (2003), in press).  相似文献   

15.
利用大型非线性有限元程序ABAQUS和LS-DYNA,对具有填充材料的金属格栅结构的冲击问题进行数值模拟.研究了不同的填充材料(金属泡沫和陶瓷)分别填充到不同的格栅构型(波纹型、蜂窝型和加强六边形)夹层板后,各类夹层板受到金属泡沫子弹和不锈钢子弹冲击时变形与能量吸收特性,探讨了夹层板上下面层板、支撑格栅及填充材料等各部分的吸能比率.研究结果表明,泡沫填充夹层板在缓冲吸能方面具有优势,陶瓷填充夹层板则在抵抗冲击穿透方面更具有优势,不同构型的夹层板,性能略有不同.  相似文献   

16.
The analytical and numerical modeling of the structural response of a prismatic metal sandwich tube subjected to internal moving pressure loading is investigated in this paper. The prismatic core is equivalent to homogeneous and cylindrical orthotropic solids via homogenization procedure. The sandwich tube with the “effective” homogenized core is modeled using multi-layer sandwich theory considering the effects of transverse shear deformation and compressibility of the core; moreover, the solutions are obtained by using the precise integration method. Several dynamic elastic finite element (FE) simulations are carried out to obtain the structural response of the tube to shock loading moving at different velocities. The comparison between analytic solutions and FE simulations demonstrates that the transient analytical model, based on the proposed sandwich model, is capable of predicting the critical velocity and the dynamic structural response of the sandwich tube with the “effective” homogenized core with a high degree of accuracy. In addition, the critical velocity predicted using FE simulations of the complete model is not in agreement with that of the effective model. However, the structural response and the maximum amplification factors obtained using FE simulations of the complete model are nearly similar to that of the effective model, when the shock loading moves at the critical velocity. The influences of the relative density on the structural response are studied, and the capabilities of load bearing for sandwich tubes with different cores are compared with each other and with the monolithic tube. The results indicate that Kagome and triangle-6 are preferred among five topologies.  相似文献   

17.
The effects of strain rate dependency and inelasticity on the transient responses of composite laminated plates are investigated. A micromechanics model which accounts for the transverse shear stress effect, the effect of strain rate dependency and the effect of inelasticity is used for analyzing the mechanical responses of the fiber and matrix constituents. The accuracy of the micromechanics model under transverse shear loading is verified by comparing the results with those obtained using a general purpose finite element code. A higher order laminated plate theory is extended to capture the inelastic deformations of the composite plate and is implemented using the finite element technique. A complete micro–macro numerical procedure is developed to model the strain rate dependent behavior of inelastic composite laminates by implementing the micromechanics model into the finite element model. Parametric studies of the transient responses of composite plates are conduced. The effects of geometry, ply stacking sequence, material models, boundary conditions and loadings are investigated. The results show that the strain rate dependency and inelasticity influence the transient responses of composite plates via two significantly different mechanisms.  相似文献   

18.
The paper studies the geometrically nonlinear behavior of walls that are strengthened with fiber reinforced polymer (FRP) composite materials but include pre-existing delaminated regions. The paper uses an analytical–numerical methodology. Three specially tailored finite elements that correspond to perfectly bonded regions, to delaminated regions where the debonded layers are in contact, and to delaminated regions where the debonded layers are not in contact are presented. All finite elements are based on a high order multi layered plate theory. The geometrical nonlinearity is introduced by means of the Von Karman nonlinear strains whereas the contact nonlinearity is handled iteratively. The validity and convergence of the finite element models is demonstrated for each type of element through comparison with closed form analytical solutions available for specific cases. The unified model that combines the three types of finite element is then used for studying the nonlinear behavior of a locally delaminated FRP strengthened wall under in-plane normal and in-plane shear loads. Finally, conclusions regarding the effect of the delamination on the response of the strengthening system, on the conditions that evolve in the bonded region that surrounds the delamination, and on the global response of the multi-layered structure are drawn. Additional conclusions regarding the application of the modeling approach to other delamination sensitive layered structural systems close the paper.  相似文献   

19.
The dynamic responses of clamped circular monolithic and sandwich plates of equal areal mass have been measured by loading the plates at mid-span with metal foam projectiles. The sandwich plates comprise AISI 304 stainless steel face sheets and aluminium alloy metal foam cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. It is found that the sandwich plates have a higher shock resistance than monolithic plates of equal mass. Further, the shock resistance of the sandwich plates increases with increasing thickness of sandwich core. Finite element simulations of these experiments are in good agreement with the experimental measurements and demonstrate that the strain rate sensitivity of AISI 304 stainless steel plays a significant role in increasing the shock resistance of the monolithic and sandwich plates. Finally, the finite element simulations were employed to determine the pressure versus time history exerted by the foam projectiles on the plates. It was found that the pressure transient was reasonably independent of the dynamic impedance of the plate, suggesting that the metal foam projectile is a convenient experimental tool for ranking the shock resistance of competing structures.  相似文献   

20.
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号