首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral characteristics of the SiF4 molecule in the range 3100–700 cm?1, including the absorption range of the band ν3, are studied in the gas phase at P = 0.4–7 bar and in solutions in liquefied Ar and Kr. In the cryogenic solutions, the relative intensities of the vibrational bands, including the bands of the isotopically substituted molecules, are determined. The absorption coefficients of the combination bands 2ν3, ν3 + ν1, ν3 + ν4, and 3ν4 are measured in the solution in Kr. In the gas phase of the one-component system at an elevated pressure of SiF4, the integrated absorption coefficient of the absorption band ν3 of the 28SiF4 molecule was measured to be A3) = 700 ± 30 km/mol. Within the limits of experimental error, this absorption coefficient is consistent with estimates obtained from independent measurements and virtually coincides with the coefficient A3) = 691 km/mol calculated in this study by the quantum-chemical method MP2(full) with the basis set cc-pVQZ.  相似文献   

2.
A high-resolution infrared spectrum of H2CO was measured in the range from 2600 to 3300 cm?1. Vibration-rotation lines assigned to the combination bands ν2 + ν3 (a-type) and ν2 + ν6 (b-type) were analyzed as asymmetric-rotor bands by taking account of the Coriolis interactions among the ν2 + ν3, ν2 + ν6, and ν2 + ν4 states, though none of the ν2 + ν4 band lines have yet been definitely identified. The main results in cm?1 units (with 2.5 times standard errors in the last digits given in parentheses) are: ν0 = 3238.45(1), A - B?= 8.252(3), B?= 1.2053(2), and B - C = 0.1719 (assumed) for ν2 + ν3; ν0 = 3000.10(1), A - B?= 8.125(46), B?= 1.2075(5), and B - C = 0.1693(14) for ν2 + ν6; and ν0 = 2904.6(48), A - B?= 8.225(54), B?= 1.2023(20), and B - C = 0.1522 (assumed) for ν2 + ν4; the effective Coriolis interaction terms are: ξ26,24a = 10.10(3)cm?1 and ξ23,26c = 0.96(3)cm?1 under the assumption that ξ23,24b = 1.2841cm?1. A second combination band 2ν2 + ν6 measured with lower resolution gave ν0 = 4734.81(6)cm?1.  相似文献   

3.
The 3ν17, 3ν37, and 4ν07 hot bands of the ν4 fundamental of C3O2 in the 1580 cm?1 region were analyzed from tunable diode laser spectra and the ground state to ν4 + 2ν07 band at 1644 cm?1 from Fourier transform spectra (FTS). The molecular constants for all of the v4 1 ← 0 bands as well as the intensity of the ν0 + 2ν07 sum band relative to the ν4 fundamental were in agreement with the predictions of the model of Weber and Ford. FTS spectra at 0.05 cm?1 resolution were obtained of the sum and difference bands of ν2 with ν7 in the 750–900 cm?1 region. Sharp Q branches occur for each ν7 state in the sum bands, but only a number of R-branch bandheads and no recognizable Q branches in the difference bands. Assignments of the sum band Q branches through v7 = 6 were made and molecular constants were determined for the ν2 + ν17 ← 0 transition at 819.7 cm?1. The ν7 potential function in the v2 = 1 state was found to have a 1.2 cm?1 barrier with a minimum at α = 4.9°, where 2α is the angular deviation from linearity. The Q-branch positions predicted from the calculated energy levels fit those observed within several cm?1.  相似文献   

4.
We have measured IR absorption spectra of solutions C2F6 in CF4 (T = 178 K) and CF4 in C2F6 (T = 173 K) in the overtone range of the spectrum. We have studied how the resonance dipole-dipole interaction affects the formation of contours of bands that correspond to transitions to states involving the vibrations ν10(C2F6) and ν3(CF4), which are strong in the dipole absorption. For the system C2F6 in liquid CF4, the state ν2 + ν10(C2F6) resonantly interacts with the state ν2(C2F6) + ν3(CF4), and, for the system CF4 in liquid C2F6, the state ν1 + ν3(CF4) resonantly interacts with the state ν1(CF4) + ν10(C2F6). The contours of the bands ν2 + ν10 (C2F6) in the spectrum of the mixture with CF4 and of the bands ν1 + ν3(CF4) in the spectrum of the mixture with C2F6 have been calculated.  相似文献   

5.
Experimental line intensities of 1727 transitions arising from nine hot bands in the pentad–dyad system of methane are fitted to first and second order using the effective dipole moment expansion in the polyad scheme. The observed bands are ν3− ν2, ν3− ν4, ν1− ν2, ν1− ν4, 2ν4− ν4, ν2+ ν4− ν2, ν2+ ν4− ν4, 2ν2− ν2, and 2ν2− ν4, and the intensities are obtained from long-path spectra recorded with the Fourier transform spectrometer located at Kitt Peak National Observatory. For the second order model, some of the 27 intensity parameters are not linearly independent, and so two methods (extrapolation and effective parameters) are proposed to model the intensities of the hot bands. In order to obtain stable values for three of these parameters, 1206 dyad (ν4, ν2) intensities are refitted simultaneously with the hot band lines. The simultaneous fits to first and second order lead to rms values respectively of 21.5% and 5.0% for the 1727 hot band lines and 6.5% and 3.0% for the 1206 dyad lines. The band intensities of all 10 pentad–dyad hot bands are predicted in units of cm−2atm−1at 296 K to range from 0.931 (for 2ν4− ν4) to 7.67 × 10−5(for 2ν4− ν2). The total intensities are also estimated to first order for two other hot band systems (octad–pentad and tetradecad–octad) that give rise to weak transitions between 5 and 10 μm.  相似文献   

6.
The high-resolution (0.005 cm−1) Fourier transform infrared spectrum of PH3 is recorded and analyzed in the region of the fundamental stretching bands, ν1 and ν3. The ν24 and 2ν4 bands are taken into account also. Experimental transitions are assigned to the ν1, ν3, ν24, and 2ν4 bands with the maximum value of quantum number J equal to 15, 15, 13, and 15, respectively. a1-a2 splittings are observed and described up to the value of quantum number K equal to 10. The analysis of a1/a2 splittings is fulfilled with a Hamiltonian model which takes into account numerous resonance interactions among all the upper vibrational states.  相似文献   

7.
The bending vibration-rotation band ν4 of DCCF was studied. The measurements were carried out with a Fourier spectrometer at a resolution of about 0.03 cm?1. The constants B0=0.29141(1)cm?1, α4=?5.02(2)×10?4cm?1, q4=4.52(3)×10?4cm?1, and D0=9.2(4)×10?8cm?1 were derived. The rotational analysis of the “hot” bands 2ν4(Δ) ← ν4(II) and 2ν4+) ← ν4(II) was performed. In addition, the “hot” bands ν4 + ν5 ← ν5 were assigned. A set of vibrational constants involved was derived.  相似文献   

8.
Ozone line shifts by nitrogen and oxygen pressure are computed for the ν1 + ν3, 2ν1 and 2ν3 bands of the 5 μm spectral region by a semiempirical approach. The calculated values agree with measurements better than 0.001 cm?1 atm?1 for 98% of O3–N2 lines and 87% of O3–O2 lines. In contrast with the water molecule case, the polarization components of the interaction potential are shown to contribute to the line shift more efficiently than the electrostatic interactions. As intermediate results, the mean dipole polarizability and the components of the polarizability tensor for the vibrational states (101), (200), and (002) of ozone molecule are determined by least-squares fitting of theoretical shifts to some experimental values. The temperature exponents for the ν1 + ν3 band lines are also estimated.  相似文献   

9.
Infrared reflection-absorption spectra of thin films of α-crystalline hexafluoroethane deposited on a gold-plated copper mirror are measured at temperatures of 70 and 80 K. The bands corresponding to strong in the dipole absorption vibrations ν5 and ν10 have complex contours, the shape of which is explained in terms of the resonant dipole–dipole interaction between identical spectrally active molecules of the crystal. Splittings of the complex ν5 and ν10 bands are explained taking into account two effects: the Davydov splitting and the LO–TO splitting of the strong modes. Bands of the asymmetric 13С12СF6 isotopologue in the absorption spectrum of the crystal exhibit an anomalously large isotope shift as compared with the shift in the spectrum of free molecules. This anomaly is explained by intermolecular resonant dipole–dipole interaction of asymmetric 13С12СF6 isotopologue with molecules of the environment, consisting of the most abundant 12C2F6 isotopologue. The correctness of the given interpretation is confirmed calculating these three effects in the model of resonant dipole–dipole interaction.  相似文献   

10.
Doppler-limited tunable-diode laser spectra of the stretching fundamental ν3 of 28SiF4 near 1031 cm?1 were analyzed and the spectroscopic constants determined. The ν3 vibrational dipole moment derivative was determined for several rovibrational lines.  相似文献   

11.
Line intensities in the four 0–2, 0–3, 0–4, 0–5 vibration-rotation bands of HBr were measured. The electric dipole matrix elements 〈0|M|ν'〉 for vibrational transitions with ν'?5 have been calculated by using a Dunham potential and the analytical solution of the Schrödinger equation described by R.H. Tipping. A dipole-moment expansion accurate to M5 was determined by fitting these matrix elements to the available experimental data on line intensities. The experimental results were also used to calculate the Einstein coefficients of the R0 lines for the bands ν' → ν′' with ? ν' ? 5.  相似文献   

12.
The water vapour line-broadening (γ) and shift (δ) coefficients for 310 lines of 10 vibrational bands ν1, ν3, 2ν2, ν1+ ν2, ν2+ ν3,23, 2ν1, ν1+ ν3, 2ν3 and ν1 +2ν2 induced by argon pressure were measured with a Bruker IFS HR 125 spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm1 and over a wide pressure range of Ar. The calculations of the broadening coefficients γ and δ were performed in the framework of the semi-classical method. The intermolecular potential was taken as the sum of the atom–atom potential and the vibrationally and rotationally dependent isotropic induction+dispersion potential. The measured γ and δ were combined with literature data for the ν2 and 3ν13, 2ν1+2ν23 vibrational bands, and the optimal sets of potential parameters that gave the best agreement with the measured broadening coefficients for each vibrational band separately were found. Then, combined experimental data of 13 vibrational bands of H2O perturbed by Ar were used to determine the analytical dependence of some potential parameters on vibrational quantum numbers.  相似文献   

13.
The hot bands in the ν1, ν2, and ν3 band systems of NC-CC-NC (3-isocyano-2-propynenitrile) have been investigated and transitions from nv9-levels with n up to 4 have been identified. Two weak bands have also been observed in the gas phase infrared spectrum at 2157 and 2410 cm−1, of which the latter is probably 2v4. A preliminary investigation of some analogous hot bands in the v4 band system of the related molecule NC-CC-CN (dicyanoacetylene) is also reported.  相似文献   

14.
The microwave spectrum of the SiF radical was observed in both 2Π12 and 2Π32 of the ground vibronic state. The SiF radical was produced by a dc discharge either in a SiF4SiH4 mixture or in a transient molecule SiF2 generated by the reaction of SiF4 with heated solid silicon. The latter gave twice as intense a spectrum. A least-squares fit to the observed spectrum showed the rotational constant and the centrifugal distortion constant to be 17 350.2752(63) and 0.03188(13) MHz, respectively, with three standard errors in parentheses applying to the last digits of the constants. The lambda-doubling parameter p0 was found to be negative, ?87.67 MHz, indicating that the 2Σ+ excited state contributions dominate over those of 2Σ?. All four hyperfine coupling constants a, b, c, and d were determined and were employed to discuss the unpaired-electron spin and orbital distributions in the SiF radical.  相似文献   

15.
Excited states with spin larger than 5 were newly established in the 132Cs nucleus via the 124Sn(11B,3n) reaction. Rotational bands built on the νh11/2 ? πd5/2, νh11/2 ? πg7/2 and νh11/2 ? πh11/2 configurations were observed up to spin I ~ 16. The νh11/2 ? πh11/2 band shows inverted signature splitting below I < 14. A dipole band was firstly observed in doubly odd Cs nuclei.  相似文献   

16.
The absorption spectrum of water vapor is studied in the region of 9375–9460 cm?1 and at temperatures within 300–1200 K using an intracavity laser spectrometer based on a Nd laser having a threshold absorption sensitivity of 10?8 cm?1. More than 270 absorption lines are detected in the high-temperature spectrum of water vapor, 70% of which are assigned to ten vibrational bands: 3ν2 + ν3, 2ν1 + ν2, ν1 + ν2 + ν3, ν2 + 2ν3, ν1 + 3ν2, 3ν3 ? ν2, 2ν2 + 2ν3 ? ν2, ν1 + 2ν2 + ν3 ? ν2, 2ν1 + ν3 ? ν2, and ν2 + 3ν3 ? 2ν2. The vibrational-rotational energy levels are determined.  相似文献   

17.
The four fundamental bands of 70GeD4 have been analyzed using the STDS software developed in Dijon (http://www.u-bourgogne.fr/LPUB/sTDS.html). Both infrared and Raman spectra were used to observe all fundamental bands. Infrared spectra of monoisotopic 70GeD4 were recorded in the regions 600 and 1500 cm−1 using the Bruker 120HR interferometer at Wuppertal. The resolution (1/maximum optical path difference) was between 2.3 and 3.3×10−3 cm−1 for the ν3 and ν4 infrared-active fundamental bands as well as for the interacting ν2 band. A high-resolution stimulated Raman spectrum of the ν1 band has been recorded in Madrid. The instrumental resolution of the Raman spectrum was 3.3×10−3 cm−1. We have performed a global fit of the ground state, ν24 bending dyad, and ν13 stretching dyad. We have used 1146, 139, and 676 assigned lines for ν24, ν1, and ν3, respectively. The standard deviation is 2.2×10−3 cm−1 for the bending dyad, 1.6×10−3 cm−1 for the ν3 infrared lines, and 1.7×10−3 cm−1 for the ν1 Raman lines. These results enabled us to perform the first experimental determination of the equilibrium bond length of germane as re=1.5173(1) Å.  相似文献   

18.
We have measured and interpreted the IR spectra of liquid ozone films at 78–85 K and ozone dissolved in liquid argon at 91–95 K. A less hindered rotation of ozone molecules in argon manifests itself as an intensity redistribution, caused by the Coriolis interaction, from the states ν3(B 1) and ν1 + ν3(B 1) to the states ν1(A 1) and 2ν1(A 1), respectively. The occurrence of wings in the contours of the bands ν1(A 1), 2ν1(A 1), and 2ν3(A 1) in liquid Ar and their absence in the spectrum of O3 also confirms the conclusion that the rotational motion of ozone molecules in an inert solvent at low temperatures is relatively less hindered. Maxima of ozone bands in Ar solution are shifted toward lower frequencies compared to those in the gas phase by 1–30 cm?1, which corresponds to the following shifts of harmonic frequencies of the molecule: Δω1 = ?1.85(5) cm?1, Δω2 = ?0.67(7) cm?1, Δω3=?7.20(5) cm?1. It was found that the absorption band of the ν3 mode in the spectrum of O3 in the liquid phase has a complicated asymmetric contour because of the resonance dipole-dipole interaction. The first and second spectral moments of this band have been determined to be M 1 = 1030.6 cm?1 and M 2 = 240.0 cm?2.  相似文献   

19.
The temperature dependence of the bending ν2, combination ν2 + ν L , and stretching (ν1, ν3, 2ν2) absorption bands in the infrared spectra of supercooled water with a temperature-change step Δt from 2 to 2.5°C was studied using an advanced infrared Fourier spectrometer. It was found that the frequency of the maximum of the stretching absorption band (2700–3700 cm?1) decreases with the reduction of the water temperature from ?0.5 to ?5.0°C. The frequency of the maximum of the combination absorption band (2130 cm?1) increases with the reduction of the water temperature in a range from ?3.0 to ?5.0°C. The frequency of the maximum of the absorption band of bending oscillation (1640 cm?1) is invariable with a reduction of the water temperature from ?0.5 to ?5.0°C.  相似文献   

20.
In this work, the concentration dependences of IR spectra were studied for aqueous LiCl, NaCl, RbCl, and CsCl solutions within the range from 4 to 0.2 M and an aqueous KCl solution within the range from 3 to 0.2 M at a temperature of –3.5°C in the middle IR region. The wavenumbers of the absorption band maxima were determined for stretching (ν1, ν3), combined (ν2 + νL), and bending ν2 vibrations at these concentrations. The established trends of the shift in the considered absorption bands provided a basis to make several conclusions about the structural transformations of the studied solutions with a decrease in concentration within the studied range. The calculations demonstrated an increase in the energy of hydrogen bonds between water molecules and their reduction in length with decreasing concentration for all of the studied solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号