首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of mesoporous silicon carbide by chemical vapor infiltration of dimethyl dichlorosilane into mesoporous silica SBA-15 and subsequent dissolution of the silica matrix with HF was investigated. The influence of the synthesis parameters of the composite material (SiC/SBA-15) on the final product (mesoporous SiC) was determined. Depending on the preparation conditions, materials with specific surface areas from 410 to 830 m2 g−1 and pore sizes between 2 and 10 nm with high mesopore volume (0.31-0.96 cm3 g−1) were prepared. Additionally, the thermal stability of mesoporous silicon carbide at 1573 K in an inert atmosphere (argon) was investigated, and compared to that of SBA-15 and ordered mesoporous carbon (CMK-1). Mesoporous SiC has a much higher thermal textural stability as compared to SBA-15, but a lower stability than ordered mesoporous carbon CMK-1.  相似文献   

2.
An ordered mesoporous aluminosilicate with completely crystalline zeolite pore wall structure, denoted as OMZ-1, was successfully synthesized by recrystallization of SBA-15 using in situ formed CMK-5 as the hard template. The role of carbon material not only serves as a hard template to preserve ordered mesoporous structure but also kinetically controls the crystallization process to form large crystals.  相似文献   

3.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   

4.
An ordered mesoporous carbon, CMK-3, was synthesized using a mesoporous siliceous material, SBA-15, as the template. CMK-3 was characterized and used for the adsorption of fullerenes C60 and C70. It was found that the adsorption capacity of CMK-3 is 4 times higher than that of activated carbon. The adsorption equilibrium isotherms of C60 and C70 on CMK-3 were studied for both single and binary systems. The reversibility of fullerene adsorption on CMK-3 was also explored. The results showed that CMK-3 is an effective and reversible adsorbent for the separation of fullerenes by adsorption.  相似文献   

5.
We report experimental results on the structure and melting behavior of ice confined in multi-walled carbon nanotubes and ordered mesoporous carbon CMK-3, which is the carbon replica of a SBA-15 silica template. The silica template has cylindrical mesopores with micropores connecting the walls of neighboring mesopores. The structure of the carbon replica material CMK-3 consists of carbon rods connected by smaller side-branches, with quasi-cylindrical mesopores of average pore size 4.9 nm and micropores of 0.6 nm. Neutron diffraction and differential scanning calorimetry have been used to determine the structure of the confined ice and the solid-liquid transition temperature. The results are compared with the behavior of water in multi-walled carbon nanotubes of inner diameters of 2.4 nm and 4 nm studied by the same methods. For D(2)O in CMK-3 we find evidence of the existence of nanocrystals of cubic ice and ice IX; the diffraction results also suggest the presence of ice VIII, although this is less conclusive. We find evidence of cubic ice in the case of the carbon nanotubes. For bulk water these crystal forms only occur at temperatures below 170 K in the case of cubic ice, and at pressures of hundreds or thousands of MPa in the case of ice VIII and IX. These phases appear to be stabilized by the confinement.  相似文献   

6.
Hexagonally structured mesoporous carbons C15 and CMK-5 and cubically structured carbon C48 were synthesized using ordered silica SBA-15 and MCM-48 as templates and carbon precursors of different structures. The surfaces of these ordered carbons were chemically functionalized by employing an approach, in which the selected diazonium compounds were in situ generated and reacted with the carbon frameworks of the mesoporous carbons. The aromatic organic molecules containing chlorine, ester, and alkyl groups were covalently attached to the surface of these ordered mesoporous carbons. The presence of functional groups on the modified carbons was confirmed with Fourier transform infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption. The BET-specific surface area and the pore width of ordered carbons were significantly reduced, whereas the primary structure of these ordered carbons and their unit cells were intact. Basically, the density of grafted functional groups is related to the specific surface area of the sample, particularly the surface area of mesopores. The surface functionalization reaction takes place only on the external surface of carbon C15, while it occurs on both of the internal and external surface of CMK-5 carbon with the nanopipe structure. The presence of the micropores in CMK-5 carbon should be responsible for its lower grafting density because the small micropores are inaccessible in the reaction. It was also proposed that the preferred adsorption/reaction in C48 may be related to the observed unsymmetrical degradation of the XRD patterns for the functionalized C48 samples. The chemical modification process considerably reduced the primary mesopores in these ordered carbons by approximately 1-1.5 nm, affording carbons with micropores in the cases of C15 and C48, and mixed micropores and small mesopores in the case of CMK-5. A grafting density of approximately 0.9-1.5 micromol/m(2) was achieved under current research.  相似文献   

7.
We have carried out a comparative study of matrix carbonization of some organic precursors (sucrose, polydivinylbenzene, polyphenol-formaldehyde, polyacrylonitrile, acetonitrile) in SBA-15 and KIT-6 silica mesoporous molecular sieves. We have shown that carbon mesoporous molecular sieves of the CMK-8 type, obtained in KIT-6 mesopores, have better adsorption characteristics due to the features of the three-dimensional cubic structure, the larger pore volume and thickness of the walls of the framework. The maximum micropore volume is observed in CMK-3 and CMK-8, obtained by carbonization of polyphenol-formaldehyde and polydivinylbenzene, while the greatest specific surface area is observed on carbonization of sucrose, where the maximum hydrogen adsorption capacity is achieved at a level of ∼1.4 wt.% (77 K, 1 atm). We show that the mesopore surface coverage by hydrogen in carbon mesoporous molecular sieves increases as the degree of graphitization increases.  相似文献   

8.
A study was carried out on the effect of the conditions of the matrix carbonization of sucrose in MCM-48 and SBA-15 silica mesoporous molecular sieves on the structure and adsorption properties of the resultant CMK-1 and CMK-3 mesoporous carbon molecular sieves. CMK-3 was found to be a structurally similar replica of SBA-15. An exact replica is not formed in the case of MCM-48. This failure is attributed to considerable deformation of the matrix during the carbonization process due to the bicontinuous pore system and thinner framework walls. This is probably related to transformation of the carbon material into a low symmetry product upon detemplating of the C/MCM-48 composite (dissolution of the silica). Mesoporous carbon materials were obtained with good adsorption structure features. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 6, pp. 365–370, November–December, 2008.  相似文献   

9.
Mesoporous carbon, CMK-3, was prepared using hexagonal SBA-15 mesoporous silica as the template and the adsorption of nonylphenol ethoxylates (NPE) onto CMK-3 was investigated. The adsorption process was well described using pseudo-second-order kinetics. At initial NPE concentrations of 107 and 530 mg l(-1), the adsorption rate constants were found to be 5.6 x 10(-3) and 8.7 x 10(-4) g mg(-1) min(-1), indicating that a higher initial concentration or adsorption amount resulted in a lower adsorption rate. NPE adsorption onto CMK-3 fitted a Langmuir-Freundlich model and the maximum amounts of NPE absorbed at 15, 25, and 35 degrees C were 923, 720, and 463 mg g(-1), suggesting an elevated adsorption capacity of CMK-3 for NPE with decreased adsorption temperature. In addition, increasing adsorption temperature led to the change of the adsorption model from the Langmuir-Freundlich to the Langmuir model. N2 adsorption results showed that the adsorption of NPE led to a decrease in the mesopore volume of CMK-3. However, the pore width of NPE-loaded CMK-3 was found to be identical to that of CMK-3.  相似文献   

10.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

11.
A high-temperature reductive sulfuration method is demonstrated to synthesize highly ordered mesoporous metal sulfide crystallites by using mesoporous silica as hard templates. H2S gas is utilized as a sulfuration agent to in situ convert phosphotungstic acid H3PW12O40.6H2O to hexagonal WS2 crystallites in the silica nanochannels at 600 degrees C. Upon etching silica, mesoporous, layered WS2 nanocrystal arrays are produced with a yield as high as 96 wt %. XRD, nitrogen sorption, SEM, and TEM results reveal that the WS2 products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure (space group, p6mm) and rodlike morphology, analogous to the mother template. The S-W-S trilayers of the WS2 nanocrystals are partially oriented, parallel to the mesochannels of the SBA-15 template. This orientation is related with the reduction of the high-energy layer edges in layered metal dichalcogenides and the confinement in anisotropic nanochannels. The mesostructure can be 3-D cubic bicontinuous if KIT-6 (Iad) is used as a hard template. Mesoporous WS2 replicas have large surface areas (105-120 m2/g), pore volumes ( approximately 0.20 cm3/g), and narrow pore size distributions ( approximately 4.8 nm). By one-step nanocasting with the H3PMo12O40.6H2O (PMA) precursor into the mesochannels of SBA-15 or KIT-6 hard template, highly ordered mesoporous MoS2 layered crystallites with the 2-D hexagonal (p6mm) and 3-D bicontinuous cubic (Iad) structures can also be prepared via this high-temperature reductive sulfuration route. When the loading amount of PMA precursor is low, multiwalled MoS2 nanotubes with 5-7 nm in diameter can be obtained. The high-temperature reductive sulfuration method is a general strategy and can be extended to synthesize mesoporous CdS crystals and other metal sulfides.  相似文献   

12.
Liang Cao  Michal Kruk 《Adsorption》2010,16(4-5):465-472
A variety of ordered mesoporous carbons (OMCs) were synthesized using ordered mesoporous silicas (OMSs) as hard templates and the mesophase pitch (MP) as a carbon precursor. The synthesis included the mixing of OMS with MP, the infiltration of OMS with MP at 450–550?°C and the carbonization of MP in OMS/MP composite followed by the dissolution of the OMS template. OMCs with structures of two-dimensional hexagonal arrays of nanorods and three-dimensional arrays of nanospheres were obtained through the replication of silica templates, including large-pore SBA-15, KIT-6, large-pore FDU-12 and SBA-16. In particular, 2-D hexagonal array of carbon nanorods (CMK-3 carbon) with (100) interplanar spacing of ~13 nm as well as an array of carbon nanospheres arranged in the face-centered cubic structure with the unit-cell parameter of 33 nm were successfully prepared. The specific surface areas of the resulting carbons were up to 400 m2/g, and the total pore volumes were up to 0.43 cm3/g, with the highest values achieved when the MP infiltration temperature was 500?°C. The OMCs exhibited narrow mesopore size distributions. As inferred from XRD, the frameworks of OMCs featured semi-graphitic structures even though moderate carbonization temperature (850?°C) was employed.  相似文献   

13.
Mesoporous silica containing a large amount of isolated Ti was prepared from an alkoxytitanosiloxane precursor through a hard template method. Isopropoxytris(tris-tert-butoxysiloxy)titanium (((i)PrO)Ti[OSi(O(t)Bu)(3)](3), TS3) was synthesized and TS3 was mixed with mesoporous carbon (CMK-3), a hard template. The mixture was pyrolyzed at 180 °C to form a composite consisting of titanosilica and the hard template. After calcination at 600 °C for the removal of the carbon template, the titanium species were not transformed to anatase TiO(2), proved by DR-UV-Vis, FTIR, XPS, and XRD, while the ESR results indicated the presence of isolated Ti. The mesoporous structure was verified by SEM, TEM, and N(2) adsorption. The Si/Ti ratio of the product was consistent with that of the precursor. All the results show that the material prepared from the precursor is ordered mesoporous silica containing a large amount of isolated Ti in the frameworks. The use of well-defined alkoxytitanosiloxane precursor leads to the formation of mesoporous silica with exactly controlled composition of titanium with neither loss of Ti nor transformation to anatase.  相似文献   

14.
不同孔径的介孔碳分子筛对VB12的吸附性质研究   总被引:5,自引:1,他引:5  
摘要利用SBA-15为模板, 在不同温度下合成了孔径大小在3.7(CMK-3-100)和6-3 nm(CMK-3-150)之间的介孔碳, 以其作为吸附剂, 研究了它们在水溶液中对VB12的吸附作用. 结果表明, CMK-3-130与CMK-3-100和CMK-3-150相比, 表现出对VB12最大的吸附能力(吸附能力为412.5 mg/g), 这是因为它有比较高的有序结构和比较大的孔容.  相似文献   

15.
Hexagonally ordered SBA-15 mesoporous silica spheres with large uniform pore diameters are obtained using the triblock copolymer, Pluronic P123, as template with a cosurfactant cetyltrimethylammonium bromide (CTAB) and the cosolvent ethanol in acidic media. A series of surface modified SBA-15 silica materials is prepared in the present work using mono- and trifunctional alkyl chains of various lengths which improves the hydrothermal and mechanical stability. Several techniques, such as element analysis, nitrogen sorption analysis, small angle X-ray diffraction, scanning electron microscopy (SEM), FTIR, solid-state (29)Si and (13)C NMR spectroscopy are employed to characterize the SBA-15 materials before and after surface modification with the organic components. Nitrogen sorption analysis is performed to calculate specific surface area, pore volume and pore size distribution. By surface modification with organic groups, the mesoporous SBA-15 silica spheres are potential materials for stationary phases in HPLC separation of small aromatic molecules and biomolecules. The HPLC performance of the present SBA-15 samples is therefore tested by means of a suitable test mixture.  相似文献   

16.
以介孔硅SBA-15为模板, 糠醇为碳源制备了高度有序的介孔碳(CMK-5), 并用微波法合成碳负载的铂纳米粒子的催化剂. 为改善铂微粒的分散性能, 在微波碳载过程中添加了适量的阳离子表面活性剂(CTAB). XRD和TEM测试结果表明, CTAB的加入改善了铂催化剂的分散性, 且使铂微粒的平均粒径降至2.9 nm左右. 循环伏安测试结果显示, 加入CTAB后所得Pt/CMK-5催化剂的电化学活性面积大于未加CTAB的以及商业Johnson Matthey公司的Pt/C催化剂的活性面积.  相似文献   

17.
以SBA-15为模板,二茂铁为碳源,利用化学气相沉积(CVD)法合成了Fe/CMK-5复合材料.用粉末X射线衍射、低温N2吸附、热重分析、透射电镜等对复合材料进行了表征.结果表明复合材料中碳以CMK-5结构存在,Fe颗粒均匀地分布在CMK-5的骨架中,通过调节CVD时间可改变Fe/CMK-5的结构参数.在pH值为11的缓冲溶液中研究了Fe/CMK-5系列复合材料对溶菌素(lysozyme)的吸附性能,考察了溶菌素在Fe/CMK-5孔道内部的结构稳定性以及在不同pH值溶液中的泄露量.  相似文献   

18.
有序介孔炭的合成及液相有机大分子吸附性能研究   总被引:3,自引:0,他引:3  
分别采用有序介孔氧化硅SBA-15和NaY分子筛为硬模板合成了系列有序介孔炭OMC和微孔炭CFY. N2静态吸附测试表明, 所合成的介孔炭具有丰富的介孔结构和集中的介孔分布. 以亚甲基蓝为探针分子, 研究其在有序介孔炭OMC和微孔炭CFY上的吸附行为. 研究结果表明, 有序介孔炭中大于3.5 nm的大介孔孔容是决定亚甲基蓝吸附容量和吸附速率的关键因素. 吸附动力学理论研究表明, 准二级动力学方程可以很好地描述亚甲基蓝分子在介孔炭上吸附动力学行为.  相似文献   

19.
Adsorption and structural properties of inverse carbon replicas of two ordered siliceous P6mm and Ia3d mesostructures have been studied by nitrogen adsorption, powder X-ray diffraction, and transmission electron microscopy. These carbon replicas were prepared by filling the pores of SBA-15 and KIT-6 siliceous templates with various carbon precursors followed by carbonization and silica dissolution. Sucrose, furfuryl alcohol, acenaphthene, mesophase pitch, and petroleum pitch were used to obtain inverse carbon replicas of SBA-15 and KIT-6. While structural properties of the resulting ordered mesoporous carbons are mainly determined by the hard template used, their adsorption properties depend on the type of the carbon precursor.  相似文献   

20.
Highly ordered SBA-16-type mesoporous silica materials were synthesized by using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer (EO(132)-PO(50)-EO(132), Pluronic F108) as template through a two-step pathway under mildly acidic conditions (pH 2.15-4.50). The highly ordered cage-like mesoporosity of the prepared SBA-16-type mesoporous silica materials having Im3m cubic mesostructure was proved by the well-defined X-ray diffraction patterns combined with transmission electron microscopy. Scanning electron microscopy shows a variation from the spherical agglomerations to the randomly shaped ones with an increase of pH value. The nitrogen adsorption-desorption analysis reveals that the prepared SBA-16-type mesoporous silica materials have a uniform small-sized pore diameter (3.37-4.24 nm) and very thick pore wall (8.84-10.2 nm). These features may make the SBA-16-type mesoporous silica materials synthesized in this study favor the incorporation of catalytically active heteroatoms in silica frameworks, and the functionalization of organic groups for applications in catalysis, sensor and separation. The two-step synthetic method under the mildly acidic conditions can also be extended to the production in the industrial scale as an environmentally friendly way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号