首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙普男 《中国物理快报》2006,23(8):2217-2220
Electronic tunnelling through a one-dimensional quantum dot chain is theoretically studied, when two leads couple to the individual component quantum dots of the chain arbitrarily. If there are some dangling quantum dots in the chain outside the leads, the electron tunnelling through the quantum dot chain is wholly forbidden while the energy of the incident electron is just equal to the molecular energy levels of the dangling quantum dots, which is known as the antiresonance effect. In addition, the influence of electron interaction on the antiresonance effect is discussed within the Hartree-Fock approximation.  相似文献   

2.
In this paper we review our recent study of coherent electronic properties of coupled two-dimensional quantum dot arrays using numerical exact-diagonalization methods on a Mott–Hubbard type correlated tight-binding model. We predict the existence of a novel kind of persistent current in a two-dimensionalisolatedarray of quantum dots in a transverse magnetic field. We calculate the conductance spectrum for resonant tunneling transport through a coherent two-dimensional array of quantum dots in the Coulomb Blockade regime. We also calculate the effective two-terminal capacitance of an array coupled to bias leads.  相似文献   

3.
We have studied excess electron filling rule in the coupled multiple nanocrystal quantum-dot systems, i.e. quantum chain and quantum pattern, by the unrestricted Hartree–Fock–Roothaan method. Assuming each quantum dot of quantum pattern to be confined in a three-dimensional spherical potential well of finite depth, we have studied the intradot and interdot electron Coulomb and exchange interactions. By varying the center distance d between the coupled quantum dots, the transition from the strong- to weak-coupling situation is realized. For the systems in question, our results show that, with the filling of excess electrons into the quantum pattern, the corresponding chemical potentials form quasi-band structure, which is similar to the energy-band structure of crystal material. In each chemical-potential band of quantum pattern, the number of chemical-potential curves is equal to the number of quantum dots, and the distributions of them depend strongly on the quantum-dot arrangement structure of quantum pattern.  相似文献   

4.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

5.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

6.
We study singularities in the IV characteristics for sequential tunneling from resonant localized levels (e.g. a quantum dot) into a one-dimensional electron system described by a Hubbard model. Boundary conformal field theory together with the exact solution of the Hubbard model subject to boundary fields allow to compute the exponents describing the singularity arising when the energy of the local level is tuned through the Fermi energy of the wire as a function of electron density and magnetic field. For boundary potentials with bound states a sequence of such singularities can be observed.  相似文献   

7.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

8.
The effect of localized spins on the quantum coherence in solids is discussed. A quantum dot with an odd number of electrons can be a model system for a localized spin. It is experimentally shown that a spin flip scattering by a quantum dot pulls the trigger of quantum decoherence. On the other hand, spin flip scattering is the basic process to construct the Kondo singlet state around a magnetic impurity. Through an interference effect of the Kondo state (the Fano–Kondo effect) in a side-coupled dot system, we show experimentally that the Kondo singlet state is quantum mechanically coherent. The analysis of the Fano–Kondo lineshape indicates the locking of the phase shift to π/2, which is in agreement with theoretical predictions. The Fano–Kondo effect is also observed in an Aharonov–Bohm ring, in which a quantum dot is embedded, and also indicates the phase shift locking to π/2.  相似文献   

9.
The steady-state and time-dependent current–voltage (I–V) characteristics are experimentally investigated in Ge quantum dot (QD)/SiO2 resonant tunneling diodes (RTDs). Ge QDs embedded in a SiO2 matrix are naturally formed by thermal oxidation of Si0.9Ge0.1 nanowires (30 nm×50 nm) on silicon-on-insulator substrates. The average dot size and spacing between dots are 9±1 and 25 nm, respectively, from TEM observations, which indicate that one or two QDs are embedded between SiO2 tunneling barriers within the nanowires. Room-temperature resonant oscillation, negative differential conductance, bistability, and fine structures are observed in the steady-state tunneling current of Ge-QD/SiO2 RTDs under light illumination. Time-dependent tunneling current characteristics display periodic seesaw features as the Ge-QDs RTD is biased within the voltage regime of the first resonance peak while they exhibit harmonic swing behaviors as the RTD is biased at the current valleys or higher-order current peaks. This possibly originates from the interplay of the random telegraph signals from traps at the QD/SiO2 interface as well as the electron wave interference within a small QD due to substantial quantum mechanics effects.  相似文献   

10.
The time-dependent electron transport through a quantum dot with the additional over-dot (bridge) tunneling channel within the evolution operator technique has been studied. The microwave field applied to the leads and quantum dot has been considered and influence of the time-dependent shift of corresponding energy levels on the quantum dot charge and current flowing in the system, its time-averaged values and derivatives of the average current with respect to the gate and source–drain bias voltages have been investigated. The influence of the over-dot tunneling channel on the photon-assisted tunneling has been also studied.  相似文献   

11.
The process of formation of the localized defect states due to substitutional impurity in sp2-bonded graphene quantum dot is considered using a simple tight-binding-type calculation. We took into account the interaction of the quantum dot atoms surrounding the substitutional impurity from the second row of elements. To saturate the external dangling sp2 orbitals of the carbon additionally 18 hydrogen atoms were introduced. The chemical formula of the quantum dot is H18C51X, where X is the symbol of substitutional atom. The position of the localized levels is determined relative to the host-atoms (C) εp energies. We focused on the effect of substitutional doping by the B, N and O on the eigenstate energies and on the total energy change of the graphene dots including for O the effect of lattice distorsion. We conclude that B, N, and O can form stable substitutional defects in graphene quantum dot.  相似文献   

12.
The magnetic state of a single magnetic ion (Mn2+) embedded in an individual quantum dot is optically probed using micro-spectroscopy. The fine structure of a confined exciton in the exchange field of a single Mn2+ ion (S=) is analyzed in detail. The exciton–Mn2+ exchange interaction shifts the energy of the exciton depending on the Mn2+ spin component and six emission lines are observed at zero magnetic field. The emission spectra of individual quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton–Mn2+ exchange interaction (dependent on the Mn position) and the anisotropic part of the electron–hole exchange interaction (related to the asymmetry of the quantum dot).  相似文献   

13.
We have studied the electron dynamics in different geometrical arrangements of the two coupled double quantum dot structures. Applying the equation of motion method for appropriate correlation functions the occupation probabilities of different quantum dots of the considered system has been theoretically investigated. The numerical calculations were performed for different forms of the time-dependent tunneling amplitudes and quantum dot energy levels. We found, among others, that under some conditions for the tunneling amplitudes changed in the form of Gaussian pulses it is possible to localize the electron in a controlled manner on the given dot of the considered system.  相似文献   

14.
A model describing the emission of photoexcited electrons and holes from an array of InAs quantum dots into the GaAs matrix is suggested. The analytical expression obtained for the emission efficiency takes into account the thermal emission of charge carriers into the GaAs matrix and two-dimensional states of the InAs wetting layer, tunneling and thermally activated tunneling escape, and electron transitions between the quantum-confinement levels in the conduction band of InAs. The temperature dependences of the photosensitivity in the regions of the ground-state and first excited-state optical transitions in InAs/GaAs quantum dots grown by gas-phase epitaxy are investigated experimentally. A number of quantum dot parameters are determined by fitting the results of a theoretical calculation to the experimental data. Good agreement between the theoretical and experimental results is obtained in this way.  相似文献   

15.
A CaF2/Ge/CaF2/Si(111) heteroepitaxial structure with Ge quantum dots was grown by molecular-beam epitaxy. A negative differential conductivity and conductivity oscillations caused by resonant hole tunneling were observed at room temperature. The energy spacing between the levels in quantum dots, as determined from the oscillation period, is 40–50 meV depending on the Ge dot size.  相似文献   

16.
We discuss resonant tunneling through quantum dot energy levels considering the charging energy of the dot. The hamiltonian of the system is reduced to a form of the Anderson hamiltonian of resonant tunneling. The mean-field approximation is applied and current–voltage characteristics are evaluated. The self-consistent solution is investigated for the low tunneling rate case in the low-temperature condition. The current bistability and the related current hysteresis are pointed out. The Coulomb staircase is shown in the current–voltage characteristics. These features are all due to Coulomb repulsion within the dot.  相似文献   

17.
We present a cross-sectional scanning tunneling microscopy (X-STM) investigation of InAs quantum dots in a GaAs matrix. The structures were grown by molecular beam epitaxy (MBE) at a low growth rate of 0.01 ML/s and consist of five layers of uncoupled quantum dot structures. Detailed STM images with atomic resolution show that the dots consist of an InGaAs alloy and that the indium content in the dot increases towards the top. The analysis of the height versus base-length relation obtained from cross-sectional images of the dots shows that the shape of the dots resembles that of a truncated pyramid and that the square base is oriented along the [010] and [100] directions. Using scanning tunneling spectroscopy (STS) we determined the onset for electron tunneling into the conduction and out of the valence band, both in the quantum dots and in the surrounding GaAs matrix. We found equal voltages for tunneling out of the valence band in GaAs or InGaAs whereas tunneling into GaAs occurred at higher voltages than in InGaAs.  相似文献   

18.
安兴涛  穆惠英  咸立芬  刘建军 《中国物理 B》2012,21(7):77201-077201
Spin-dependent transport in a triple quantum dots superlattice system with a bridge coupling to two leads is studied. There exists an odd-even parity oscillation of spin polarization at the central dot level εc = 0 due to the spin-dependent Fano and Dicke effects induced by the quantum interference and the Rashba spin-orbit interaction. In the case of even numbers of triple quantum dots, the device can be used as a spin switch by tuning the energy difference h between the energies of the central and the lateral dots. These results may be helpful to design and fabricate practical spintronic devices.  相似文献   

19.
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with subgap peaks at |V(sd)| = Delta/e markedly stronger (weaker) than the quasiparticle tunneling peaks at |V(sd)| = 2Delta/e for odd (even) occupation. We attribute the enhanced Delta peak to an interplay between Kondo correlations and Andreev tunneling in dots with an odd number of spins, and we substantiate this interpretation by a poor man's scaling analysis.  相似文献   

20.
We have demonstrated GaN/AlN quantum dots (QD) photodetectors, relying on intraband absorption and in-plane carrier transport in the wetting layer. The devices operate at room temperature in the wavelength range 1.3–1.5 μm. Samples with 20 periods of Si-doped GaN QD layers, separated by 3 nm-thick AlN barriers, have been grown by plasma-assisted molecular-beam epitaxy on an AlN buffer on a c-sapphire substrate. Self-organized dots are formed by the deposition of 5 monolayers of GaN under nitrogen-rich conditions. The dot height is 1.2±0.6 to 1.3±0.6 nm and the dot density is in the range 1011–1012 cm−2. Two ohmic contacts were deposited on the sample surface and annealed in order to contact the buried QD layers. The dots exhibit TM polarized absorption linked to the s–pz transition. The photocurrent at 300 K is slightly blue-shifted with respect to the s–pz intraband absorption. The responsivity increases exponentially with temperature and reaches a record value of 10 mA/W at 300 K for detectors with interdigitated contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号