首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
含材料非线性的复合材料单钉接头累积损伤分析   总被引:7,自引:0,他引:7  
发展了静拉伸复合材料接头层合板三维逐渐损伤模型,考虑了单层复合材料在材料1-2面及3-1面上具有明显非线性剪切应力-应变关系的叠层非线性效应,结合有限元技术即应力分析、失效判定准则及损伤过程中材料性能退化等,对接头层合板损伤扩展进行了模拟,结果表明考虑材料非线性的影响与实验结果吻合更好.  相似文献   

2.
为了研究平面应变条件下各向异性材料中应力波传播的特点,利用各向异性弹性Hooke定律、 Tsai-Hill屈服准则、经典塑性流动理论,引入修正的物态方程计及高压下的体积压缩非线性,建立了平面应 变条件下正交各向异性复合材料的弹塑性本构关系,并且分析了二维问题中材料变形引起的主轴旋转及客 观应力率修正问题。最后采用动态显式有限元方法自行编写程序模拟某种纤维增强复合材料碰撞过程中平 面应力波的传播,模拟结果显示,在平面应变条件下应力波在该材料的传播过程中表现出明显的二维效应、各 向异性特点及弹塑性特点。  相似文献   

3.
复杂加载下混凝土的弹塑性本构模型   总被引:1,自引:0,他引:1  
万征  姚仰平  孟达 《力学学报》2016,48(5):1159-1171
混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.   相似文献   

4.
本文基于一个改进的弹塑性的Hellinger/Reis■ner 混合变分原理构造了一种用于解弹塑性问题的四节点等参杂交应力元.新的模型中,在单元内增加了等效应力增量、塑性等效应变增量及不协调位移变量,从而使单元内的屈服准则及流动法则平均得到满足,不协调位移改进了单元应力精度.计算表明,新的模型可以提高弹塑性杂交法的精度和计算效率.  相似文献   

5.
弱界面复合材料的简化塑性模型   总被引:1,自引:0,他引:1  
余湘彬  仲政 《力学季刊》1999,20(3):327-330
本文研究线弹簧型弱界面颗粒增强复合材料,在比例加载条件下的简化塑性模型。利用Mori-Tanaka模型,得到弱界面复合材料的割线弹塑性模量和有效应力,进而通过算例讨论了界面柔度对复合材料宏观应力应变曲线的影响。  相似文献   

6.
纤维复合材料的弹粘塑性行为体分比与应变率的影响   总被引:1,自引:0,他引:1  
利用微观力学方法研究了纤维增复合材料的弹塑性行为,着重分析了纤维体分比和加载应变率对以金属基为主的复合材料应力-应变关系的影响。给出了不同体分比的Graphite/Titanium复合材料在不同常应变率下的应力-应变关系曲线,对这两种因素的影响进行了比较分析。  相似文献   

7.
傅衣铭  李升 《力学学报》2007,39(6):822-828
基于精确应力分析的广义六自由度板理论,应用变分原理和损伤力学中 的应变等效原理,考虑复合材料铺设层内和层间界面处的损伤效应,建立了具两种损伤模式 的复合材料层合板的三维非线性平衡微分方程,且运用有限差分法对考虑损伤简支层合梁板 的层间应力进行了求解.  相似文献   

8.
平纹编织陶瓷基复合材料面内剪切细观损伤行为研究   总被引:5,自引:5,他引:0  
采用约西佩斯库(Iosipescu)纯剪切试件,研究了平纹编织SiC/SiC和C/SiC复合材料的面内剪切应力-应变行为和细观损伤特性.通过试验获得了材料不同方向上的单调和迟滞应力-应变行为,对比分析了两种材料的剪切损伤特性,结果表明材料的剪切损伤演化规律受热残余应力水平影响严重.由试件断口电镜扫描结果发现剪切加载状态下桥连纤维承受显著的弯曲载荷和变形,据此提出了纤维弯曲承载机制,并结合裂纹闭合效应分阶段阐释了材料的剪切迟滞环形状.基于材料的剪切细观损伤机制,通过两个损伤变量表征了材料的剪切损伤演化进程,得到了材料的面内剪切细观损伤演化模型.对比发现2D-C/SiC复合材料45°方向基体裂纹的起裂应力明显小于2D-SiC/SiC复合材料,而两者0°/90°方向裂纹的起裂应力基本相同.   相似文献   

9.
应变率对SiC颗粒增强铝基复合材料拉伸性能的影响   总被引:5,自引:0,他引:5  
本文利用岛津试验机和自行研制的冲击拉伸试验装置,对体积含量为10%的SiC颗粒增强铝基复合材料进行了准静态的拉伸试验、冲击拉伸试验和冲击拉伸加卸载试验,获得了复合材料在应变率为0.002s^-1-1000s^-1范围内从弹塑性变形直至断裂的完整应力应变曲线。试验结果表明,随着应变速率的提高,复合屈服应力,拉伸强度以及破坏应变均相应提高,具有明显的应变率强化效应和高速韧性现象;同时,由于冲击拉伸试验过程中热力耦合效应的影响,准静态加载下复合材料的应力指数与冲击拉伸加载下复合材料的应力指数相比降低了17.8%;在用冲击拉伸复元试验解耦出热力耦合效应的影响后,材料的静、动态等温应力应变曲线具有相同的应变硬化规律。最后,根据复合材料在不同应变率下的试验结果和Eshelby‘s等效夹杂理论,本文建立了一个计及应变率强化效应的弹塑性自洽模型,模型拟合结果与试验结果吻合得很好。  相似文献   

10.
三维机织复合材料的弹性性能预报模型   总被引:9,自引:0,他引:9  
易洪雷  丁辛 《力学学报》2003,35(5):569-577
建立了基于等效响应比拟技术的三维机织复合材料弹性性能预报模型.首先将三维机织物的结构单元分解为4个子元(经纱、纬纱、填充纱和接结纱),用几何模型去估算这些子元的体积分数.然后依据不同的外载形式,将复合材料的应力-应变关系等效地表达为3组诸子元所组成的三维弹簧网络.根据刚度系数的物理意义,采用不同的弹簧网络连接形式,并按体积平均化方法获得材料总体刚度矩阵中相应的刚度系数,进而计算得到三维机织复合材料的9个弹性系数.该模型考虑了层内交织经纱、层间交织接结纱的弯曲以及材料内部纯树脂区对三维机织复合材料弹性性能的影响.试验结果与模型的理论预测值进行比较,表明这个模型是有效的。  相似文献   

11.
This paper proposes a one-dimensional (1D) refined formulation for the analysis of laminated composites which can model single fibers and related matrices, layers and multilayers. Models built by means of an arbitrary combination of these four components lead to a component-wise analysis. Different scales can be used in different portions of the structure and this leads to a globallocal approach. In this work, computational models were developed in the framework of finite element approximations. The 1D FE formulation used has hierarchical features, that is, 3D stress/strain fields can be detected by increasing the order of the 1D model used. The Carrera Unified Formulation (CUF) was exploited to obtain advanced displacement-based theories where the order of the unknown variables over the cross-section is a free parameter of the formulation. Taylor- and Lagrange-type polynomials were used to interpolate the displacement field over the element cross-section. Lagrange polynomials permitted the use of only pure displacements as unknown variables. The related finite element led straightforwardly to the assembly of the stiffness matrices at the structural element interfaces (matrix-to-fiber, matrix-to-layer, layer-to-layer etc). Preliminary assessments with solid model results are proposed in this paper; various numerical examples were carried out on cross-ply symmetrical fiber-reinforced laminates [0/90/0] and a more complex composite C-shaped model. The examples show that the proposed models can analyze laminated structures by combining fibers, matrices, layers and multilayers and by referring to a unique structural finite element formulation.  相似文献   

12.
This work is concerned with the determination of the effective behavior of sequentially laminated composites with nonlinear behavior of the constituting phases. An exact expression for the effective stress energy potential of two-dimensional and incompressible composites is introduced. This allows to determine the stress energy potential of a rank-N sequentially laminated composite with arbitrary volume fractions and lamination directions of the core laminates in terms of an N-dimensional optimization problem.

Stress energy potentials for sequentially laminated composites with pure power-law behavior of the phases are determined. It is demonstrated that as the rank of the lamination becomes large the behaviors of certain families of sequentially laminated composite tend to be isotropic. Particulate composites with both, stiffer and softer inclusions are considered. The behaviors of these almost isotropic composites are, respectively, softer and stiffer than the corresponding second-order estimates recently introduced by Ponte Castañeda (1996).  相似文献   


13.
A new concept of a piezoelectric ceramic/shape memory alloy (SMA) composite is proposed with aim of using this as a new actuator material with fast actuation speed and large strain. To prove the new concept, a new model is constructed based on Eshelby formulation where linear piezoelectric constitutive equations and bi-linear superelastic equations of SMA are used. The predictions of the strain induced by applied stress and electric field are made for two simple designs of piezo–SMA composites, 1-D series and 1-D parallel laminated composites. The proposed model indicated that 1-D parallel laminate provides the highest strain induced under bias stress and applied electric field among other composite geometries.  相似文献   

14.
The effects of strain rate dependency and inelasticity on the transient responses of composite laminated plates are investigated. A micromechanics model which accounts for the transverse shear stress effect, the effect of strain rate dependency and the effect of inelasticity is used for analyzing the mechanical responses of the fiber and matrix constituents. The accuracy of the micromechanics model under transverse shear loading is verified by comparing the results with those obtained using a general purpose finite element code. A higher order laminated plate theory is extended to capture the inelastic deformations of the composite plate and is implemented using the finite element technique. A complete micro–macro numerical procedure is developed to model the strain rate dependent behavior of inelastic composite laminates by implementing the micromechanics model into the finite element model. Parametric studies of the transient responses of composite plates are conduced. The effects of geometry, ply stacking sequence, material models, boundary conditions and loadings are investigated. The results show that the strain rate dependency and inelasticity influence the transient responses of composite plates via two significantly different mechanisms.  相似文献   

15.
A stress function-based approach is proposed to analyze the free-edge interlaminar stresses of piezo-bonded symmetric laminates. The proposed method satisfies the traction free boundary conditions, as well as surface free conditions. The symmetric laminated structure was excited under electric fields that can generate induced strain, resulting in pure extension in the laminated plate. The governing equations were obtained by taking the principle of complementary virtual work. To verify the proposed method, cross-ply, angle-ply and quasi-isotropic laminates were analyzed. The stress concentrations predicted by the present method were compared with those analyzed by the finite element method. The results show that the stress function-based analysis of piezo-bonded laminated composite structures is an efficient and accurate method for the initial design stage of piezo-bonded composite structures.  相似文献   

16.
Layup optimization of the maximum strength of laminated composites with internal ply-drops is performed by genetic algorithm (GA). Interlaminar stresses are considered in estimating the strength of laminates and calculated by the stress function based complementary virtual work principle. Out-of-plane stress functions are expanded in terms of harmonic series through the thickness direction and initially satisfied the traction free boundary conditions of laminates automatically. As the number of expansion terms is increased, stress concentration near the dropped plies is predicted with better accuracy. Since the proposed analysis is relatively simple and efficient in the prediction of interlaminar stress concentration near the ply-drops, the layup optimization of composite laminates with dropped plies considering interlaminar strength can be easily performed by GA. In the formulation of genetic algorithm, a repair strategy is adopted to satisfy given constraints and multiple elitism scheme is implemented to efficiently find multiple global optima or near-optima.  相似文献   

17.
The paper is focused on optimization of prestress and placement of fibers in laminated cylindrical composites. It also involves a stochastic study of prestress deviation in particular layers. Optimization (design) parameters considered in control of internal stresses are the eigenstrains. The behavior of a certain functional serving for optimization of the eigenstrains with stochastically perturbed and correlated values in a laminated cylindrical structure is examined. In the first part, a deterministic optimization of composite laminated cylinders is performed by means of the eigenstrains produced in the layers during the fabrication process. Because fabrication of laminates is sensitive to deviation of eigenstrain magnitudes, as shown from stochastic study, an additional minimization of the eigenstrains is introduced.  相似文献   

18.
Time-harmonic plane elastic SH-waves propagating in periodically laminated composites with functionally graded (FG) interlayers are investigated in this paper. A finite stack of periodic layers between two identical elastic half-planes is considered. Two different power laws are used to describe the property variation of the FG interlayers within the unit-cell. Two different models are developed to deal with the FG interlayers, namely, the explicit FG model and the multilayer model. In conjunction with the transfer matrix method, the wave reflection and transmission coefficients, and band gaps of the FG periodic laminates are computed. Numerical results are presented and discussed to reveal the influences of the FG and homogeneous interlayers, the incidence angle of time-harmonic plane SH wave on the location and width of band gaps. The explicit FG model developed in this study is accurate and capable to simulate the full wave pattern within the periodic laminates, and it can be easily extended to periodic laminates with defects. The corresponding results presented in this paper may have important applications in optimizing and developing novel acoustic devices such as wave filters and noise insulators.  相似文献   

19.
基于精化高阶理论,建立了层合板有限元模型,编制了相应的MATLAB程序.分析了三层四边简支层合板在力荷载作用下的响应,与解析解吻合良好.分析了热-力共同作用下层合板的响应,与基于ABAQUS软件建立的精细有限元模型计算结果相对比,验证了模型的高效性.研究了跨厚比和铺设方式对层合板层间应力的影响,结果表明:跨厚比对层间应...  相似文献   

20.
The theoretical research on stress waves propagating in laminated composites has been reported by many authors. However, there has been little work on experimental studies of stress waves in those materials. This paper presents an experimental investigation on stress waves propagating parallel to the layers of a laminated composite. A sandwich laminated composite consisting of two aluminum facings and an epoxy core is used as a specimen. The stress wave in the specimen is observed by use of high-speed holographic interferometry with a pulsed laser. In order to obtain the relative fringe orders, the interference fringe pattern in the reconstructed image is treated as an image-processing system with a personal computer. For the calculation of the in-plane displacement, an approximate relative-fringe-order method is used. The in-plane displacements obtained at some sampling points on the surface are smoothed by using a spline function. Distributions of the in-plane displacement and the shear stress are then obtained quantitatively over the whole analyzed field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号