首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electromagnetic scattering of the surface wave by a rectangular impedance cylinder located on an infinite reactive plane is considered for the case that the impedances of the horizontal and vertical sides of the cylinder can have different values. Firstly, the diffraction problem is reduced into a modified Wiener–Hopf equation of the third kind and then solved approximately. The solution contains branch‐cut integrals and two infinite sets of constants satisfying two infinite systems of linear algebraic equations. The approximate analytical or numerical evaluations of corresponding integrals and numerical solution of the linear algebraic equation systems are obtained for various values of parameters such as the surface reactance of the plane, the vertical and horizontal wall impedances, the width and the height of the cylinder. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We study the scattering problem for the Hartree-Fock equation
(HRF)  相似文献   

3.
Classic scattering from objects of arbitrary shape must generally be treated by numerical methods. It has proven very difficult to describe scattering from general bounded objects without resorting to frequency-limiting approximations. The starting point of many numerical methods is the Helmholtz integral representation of a given wavefield. From that point several departures are possible for constructing computationally feasible approximate schemes. To date, attempts at direct solutions have been rare.One method (originated by P. Waterman) that attacks the exact numerical solution for a very broad class of problems begins with the Helmholtz integral representations for a point exterior and interior to the target in a partial wave expansion. After truncating the partial wave space, one arrives at a set of matrix equations useful in describing the field. This method is often referred to as the T-matrix method, null-field, or extended integral equation method. It leads to a unique solution of the exterior boundary integral equation by incorporating the interior solution (extinction theorem) as a constraint. In principle, there are no theoretical limitations on frequency, although numerical complications can arise and must be appropriately dealt with for the method to be computationally reliable.For submerged objects the formalism will be outlined for acoustical scattering from targets that are rigid; sound-soft and penetrable; elastic solids; elastic shells; and layered elastic objects. Finally, illustrations of several numerical examples for the above will be presented to emphasize specific response features peculiar to a variety of targets.  相似文献   

4.
We consider an electromagnetic scattering problem for inhomogeneous media. In particular, we focus on the numerical computation of the electromagnetic scattered wave generated by the interaction of an electromagnetic plane wave and an inhomogeneity in the corresponding propagation medium. This problem is studied in the VV polarization case, where some special symmetry requirements for the incident wave and for the inhomogeneity are assumed. This problem is reformulated as a Fredholm integral equation of second kind, which is discretized by a linear system having a special form. This allows to compute efficiently an approximate solution of the scattering problem by using iterative techniques for linear systems. Some numerical examples are reported.  相似文献   

5.
An a priori error estimate using a so called α,β‐ periodic transformation to study electromagnetic waves in a periodic diffraction grating is derived. It has been reported for single scattering that there is an instability in numerical methods for high wavenumbers. To address this problem, the analytical solution of the scattering problem when the domain is scatterer free and an unknown function called the α,β‐quasi periodic solution are used to transform the associated Helmholtz problem. The well‐posedness of the resulting continuous problem is analysed before approximating its solution using a finite element discretization. To guarantee the uniqueness of this approximate solution, an a priori error estimate is derived. Finally, numerical results are presented that suggest that the α,β‐quasi periodic method converges at a far lower number of degrees of freedom than the α,0‐quasi periodic method reported previously; especially for high wavenumbers. This is particularly true when the incident wave only undergoes a small perturbation because of the presence of the scatterer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We consider the scattering of time‐harmonic acoustic plane waves by a crack buried in a piecewise homogeneous medium. The integral representation for a solution is obtained in the form of potentials by using Green's formula. The density in potentials satisfies the uniquely solvable Fredholm integral equation. Then we obtain the existence and uniqueness of the solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A Newton method is presented for the approximate solution of the inverse problem to determine the shape of a sound-soft or perfectly conducting arc from a knowledge of the far-field pattern for the scattering of time-harmonic plane waves. Fréchet differentiability with respect to the boundary is shown for the far-field operator, which for a fixed incident wave maps the boundary arc onto the far-field pattern of the scattered wave. For the sake of completeness, the first part of the paper gives a short outline on the corresponding direct problem via an integral equation method including the numerical solution.  相似文献   

8.
** Corresponding author. Email: biren{at}isical.ac.in The problem of water wave scattering by two sharp discontinuitiesin the surface boundary conditions involving infinitely deepwater is examined here by reducing it to two coupled Carleman-typesingular integral equations. The discontinuities arise due tothe presence of two types of non-interacting materials floatingon the surface, one type being in the form of an infinite stripof finite width sandwiched between another type. The non-interactingmaterials form an inertial surface which is a mass-loading modelof floating ice and is regarded as a material of uniform surfacedensity having no elastic property. The two integral equationsare solved approximately by assuming the two discontinuitiesto be widely separated, and approximate analytical expressionsfor the reflection and transmission coefficients are also obtained.This problem has applications in wave propagation through stripsof frazil or pancake ice modelled as floating inertial surfaces.Numerical results for the reflection coefficient are depictedgraphically against the wave number for different values ofthe surface densities of the two types of floating materials.The main feature of the graphs is the oscillatory nature ofthe reflection coefficient and occurrence of zero reflectionfor an increasing sequence of discrete values of the wave number.A direct analytical treatment to solve the integral equationsnumerically, when the separation length between the two discontinuitiesis arbitrary, is also indicated. For the case of more than twodiscontinuities the solution methodology of the correspondingscattering problem is described briefly.  相似文献   

9.
In this paper we consider the linear elastic wave equation with the free boundary condition (the Neumann condition), and formulate a scattering theory of the Lax and Phillips type and a representation of the scattering kernel. We are interested in surface waves (the Rayleigh wave, etc.) connected closely with situations of boundaries, and make the formulations intending to extract this connection.

The half-space is selected as the free space, and making dents on the boundary is considered as a perturbation from the flat one. Since the lacuna property for the solutions in the outgoing and incoming spaces does not hold because of the existence of the surface waves, instead of it, certain decay estimates for the free space solutions and a weak version of the Morawetz arguments are used to formulate the scattering theory.

We construct the representation of the scattering kernel with outgoing scattered plane waves. In this step, again because of the existence of the surface waves, we need to introduce new outgoing and incoming conditions for the time dependent solutions to ensure uniqueness of the solutions. This introduction is essential to show the representation by reasoning similar to the case of the reduced wave equation.

  相似文献   


10.
In [3] a new method was introduced for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. This method is based on the solution of a new class of boundary value problems for the reduced wave equation called interior transmission problems. In this paper it is shown that if there is absorption there exists at most one solution to the interior transmission problem and an approximate solution can be found such that the metaharmonic part is a Herglotz wave function. These results provide the necessary theoretical basis for the inverse scattering method introduced in [3]  相似文献   

11.
In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.  相似文献   

12.
A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.  相似文献   

13.
We consider the acoustic wave scattering by an impenetrable obstacle embedded in a multilayered background medium, which is modelled by a linear system constituted by the Helmholtz equations with different wave numbers and the transmission conditions across the interfaces. The aim of this article is to construct an efficient computing scheme for the scattered waves for this complex scattering process, with a rigorous mathematical analysis. First, we construct a set of functions by a series of coupled transmission problems, which are proven to be well-defined. Then, the solution to our complex scattering in each layer is decomposed as the summation in terms of these functions, which are essentially the contributions from two interfaces enclosing this layer. These contributions physically correspond to the scattered fields for simple scattering problems, which do not involve the multiple scattering and are coupled via the boundary conditions. Finally, we propose an iteration scheme to compute the wave field in each layer decoupling the multiple scattering effects, with the advantage that only the solvers for the well-known transmission problems and an obstacle scattering problem in a homogeneous background medium are applied. The convergence property of this iteration scheme is proven.  相似文献   

14.
We obtain explicit formulas for the scattering of plane waves with arbitrary profile by a wedge under Dirichlet, Neumann and Dirichlet‐Neumann boundary conditions. The diffracted wave is given by a convolution of the profile function with a suitable kernel corresponding to the boundary conditions. We prove the existence and uniqueness of solutions in appropriate classes of distributions and establish the Sommerfeld type representation for the diffracted wave. As an application, we establish (i) stability of long‐time asymptotic local perturbations of the profile functions and (ii) the limiting amplitude principle in the case of a harmonic incident wave. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
By using elementary symmetric functions, this paper presents an explicit representation for the Lagrangian numerical differentiation formula as well as the error estimate for local approximation. And we also point out that the numerical differentiation formula constructed by Li [J.P. Li, General explicit difference formulas for numerical differentiation, J. Comput. Appl. Math. 183 (2005) 29-52] is actually a special case of the Lagrangian numerical differentiation formula to approximate the values of the derivatives at the nodes.  相似文献   

16.
In this paper, we consider the Dirichlet and impedance boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane. These boundary value problems arise in a study of time‐harmonic acoustic scattering of an incident field by a sound‐soft, infinite rough surface where the total field vanishes (the Dirichlet problem) or by an infinite, impedance rough surface where the total field satisfies a homogeneous impedance condition (the impedance problem). We propose a new boundary integral equation formulation for the Dirichlet problem, utilizing a combined double‐ and single‐layer potential and a Dirichlet half‐plane Green's function. For the impedance problem we propose two boundary integral equation formulations, both using a half‐plane impedance Green's function, the first derived from Green's representation theorem, and the second arising from seeking the solution as a single‐layer potential. We show that all the integral equations proposed are uniquely solvable in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including an incident plane wave, the impedance boundary value problem for the scattered field has a unique solution under certain constraints on the boundary impedance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The scattering of electromagnetic waves by a homogeneous sphere near a plane boundary is presented in this paper. The vector wave equations derived from Maxwell’s equations are solved by means of the two orthogonal solutions to the scalar wave equation. Hankel transformation and Erdélyi’s formula are used to satisfy the planar boundary conditions and the determination of the unknown coefficients in the scattered field and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of the sphere. Existence and uniqueness of the solution of the series involving these unknown coefficients are shown.  相似文献   

18.
A solution of the scattering problem of guided SH-wave by a partly debonded circular cylinder centered in a traction free plate has been set up. The plate is divided up into three regions with two imaginary planes perpendicular to the plate walls. In the central region where the partly debonded cylindrical obstacle is posted, the wave field is expanded into the cylindrical wave modes and Chebyshev polynomials. In the other two exterior regions the fields are expanded into the plate wave modes. A system of fundamental equations to solve the problem is obtained according to the traction free boundary condition on the plate walls and the continuity condition of the traction and the displacement across the imaginary planes. The approximate numerical method termed mode-matching technique is used to construct a matrix equation to obtain curves showing the coefficient of reflection and transmission versus the ratio of the cylinder’s radius to the plate’s half-thickness and the angular width of the debonded region. A comparison of the numerical results between the welded interface condition and the debonded interface condition is made, and the results are discussed.  相似文献   

19.
《Discrete Mathematics》2022,345(1):112674
Recently, Gnutzmann and Smilansky [5] presented a formula for the bond scattering matrix of a graph with respect to an Hermitian matrix. We present another proof for this formula by a technique use in the zeta function of a graph. Furthermore, we generalize Gnutzmann and Smilansky's formula to a regular covering of a graph. Finally, we define an L-function of a graph, and present a determinant expression. As a corollary, we express the generalization of Gnutzmann and Smilansky's formula to a regular covering of a graph by using its L-functions.  相似文献   

20.
A boundary element method is introduced to approximate the solution of a scattering problem for the Helmholtz equation with a generalized Fourier–Robin‐type boundary condition given by a second‐order elliptic differential operator. The formulation involves three unknown fields, but is free from any hypersingular integral. Existence and uniqueness of the solution are established using a Babuška inf–sup condition. When implementing the method, a lumping process allows to remove two fields from the formulation. The numerical solution has thus the same cost as the one of a problem relative to a usual Neumann boundary condition. Numerical tests confirm the ability of the method for solving this type of non‐standard boundary value problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号