首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the thermal diffusion behavior of the nonionic surfactant solutions C 12E 6/water and C 12E 5/water at different concentrations and temperatures using thermal diffusion forced Rayleigh scattering (TDFRS). Two different types of TDFRS setups have been applied. In the classical TDFRS, we use an argon laser to write the optical grating into the sample by using a small amount of ionic dye to convert the optical grating into a temperature grating. In the other setup, called IR-TDFRS, we use an infrared laser as the writing beam, which utilizes the water absorption band to convert the optical grating into a temperature grating. The measurements by IR-TDFRS show a one-mode signal for all concentrations and temperatures, while the signal in the classical TDFRS consists of two modes for higher temperatures and lower surfactant concentrations (Ning, H.; et al. J. Phys. Chem. B 2006, 110, 10746). We find good agreement between the Soret coefficient determined in the IR-TDFRS and the one derived from the first fast mode in the previous studies. The Soret coefficient of the nonionic solutions is positive and enhanced at the critical point. In general, the Soret coefficient of the micelles tends to increase with temperature. We found that the presence of the second mode observed in the classical TDFRS is related to the addition of the ionic dye, but even with the ionic dye it is not possible to observe a second mode in the IR-TDFRS. The origin of the second mode is discussed in terms of charged micelles and an inhomogenous dye distribution in the temperature gradient.  相似文献   

2.
Small proteins move in crowded cell compartments by anomalous diffusion. In many of them, e.g., the endoplasmic reticulum, the proteins move between lipid membranes in the aqueous lumen. Molecular crowding in vitro offers a systematic way to study anomalous and normal diffusion in a well controlled environment not accessible in vivo. We prepared a crowded environment in vitro consisting of hexaethylene glycol monododecyl ether (C(12)E(6)) nonionic surfactant and water and observed lysozyme diffusion between elongated micelles. We have fitted the data obtained in fluorescence correlation spectroscopy using an anomalous diffusion model and a two-component normal diffusion model. For a small concentration of surfactant (below 4 wt %) the data can be fitted by single-component normal diffusion. For larger concentrations the normal diffusion fit gave two components: one very slow and one fast. The amplitude of the slow component grows with C(12)E(6) concentration. The ratio of diffusion coefficients (slow to fast) is on the order of 0.1 for all concentrations of surfactant in the solution. The fast diffusion is due to free proteins while the slow one is due to the protein-micelle complexes. The protein-micelle interaction is weak since even in a highly concentrated solution (35% of C(12)E(6)) the amplitude of the slow mode is only 10%, despite the fact that the average distance between the micelles is the same as the size of the protein. The anomalous diffusion model gave the anomaly index (r(2)(t) approximately t(alpha)), alpha monotonically decreasing from alpha = 1 (at 4% surfactant) to alpha = 0.88 (at 37% surfactant). The fits for two-component normal diffusion and anomalous diffusion were of equally good quality, but the physical interpretation was only straightforward for the former.  相似文献   

3.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

4.
In a recent study, we showed that the surfactant 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000) induced mixed micelles of either threadlike or discoidal shape when mixed with different types of lipids. In this study, we have exchanged the PEG-lipid for the more conventional surfactants octaethylene glycol monododecyl ether (C12E8), hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS). Cryo-TEM investigations show that also these surfactants are able to induce the formation of long-lived discoidal micelles. Generally, the preference for either discoidal or threadlike micelles can be tuned by the choice of lipids and environmental conditions in much the same way as observed for the lipid/PEG-lipid system. Our investigation showed, furthermore, that the choice of surfactant may influence the type of mixed micelles formed. It is argued that the formation of discoidal rather than threadlike micelles may be rationalized as an effect of increasing bending rigidity. Our detailed theoretical model calculations show that the bending rigidity becomes significantly raised for aggregates formed by an ionic rather than a nonionic surfactant.  相似文献   

5.
The structure of mixed nonionic surfactant monolayers of monodecyl hexaethylene glycol (C10E6) and monotetradecyl hexaethylene glycol (C14E6) adsorbed at the air-water interface has been determined by specular neutron reflectivity. Using partial isotopic labeling (deuterium for hydrogen) of the alkyl and ethylene oxide chains of each surfactant, the distribution and relative positions of the chains at the interface have been obtained. The packing of the two different alkyl chain lengths results in structural changes compared to the pure surfactant monolayers. This results in changes in the relative positions of the alkyl chains and of the ethylene oxide chains at the interface. The role of the alkyl chain length is contrasted with that of the ethylene oxide chain length, determined from results reported previously on the nonionic surfactant mixture of monododecyl triethylene glycol (C12E3) and monododecyl octaethylene glycol (C12E8).  相似文献   

6.
Aggregation in mixed water-glycol and pure glycol solvents has been investigated with four related surfactants, bearing common C12 tails: anionic, sodium dodecylsulfate (SDS); cationic, dodecyltrimethylammonium bromide (C12TAB); zwitterionic C12-amidopropyldimethylamine betaine (betaine) and nonionic, octaethyleneglycol monododecyl ether (C12E8). The solvent media were water, water/ethylene glycol, and water/propylene glycol mixtures, as well as pure ethylene glycol (EG) and propylene glycol (PG), spanning relative dielectrics epsilon(r) from 79 to 30. Results from small-angle neutron scattering (SANS) experiments, employing deuterated solvents, were consistent with the presence of ellipsoidal, or cylindrical micelles, depending on solvent and surfactant type. In pure EG and PG solvents the ionic and zwitterionic surfactants exhibit only weak aggregation, with much smaller micelles than normally found in water. However, interestingly, pure EG is identified as a solvent in which nonionic C12E8 aggregates strongly, mirroring the behavior in water. In contrast when the solvent is changed to PG (epsilonr=30) aggregation of C12E8 is only minimal. Hence, aggregation is shown to be strongly dependent on surfactant type and identity of the glycol solvent.  相似文献   

7.
We have made a comparative study between the micellar regions of the octyl -d-glucoside (OG)–tetraethylene glycol monododecyl ether and the OG–poly(ethylene glycol) 20,000 systems by means of surface tension and viscosimetric measurements. The incorporation of the tetraethylene glycol monododecyl ether nonionic surfactant in the OG micelles decreases the critical micelle concentration, whereas the presence of polymer increases it. The nonionic surfactant mixture exhibits nonideal mixing behaviour. The data fit to Rubinghs treatment with a value of –5.1, which implies a modest attraction between both surfactants. The surfactant–poly(ethylene glycol) 20,000 system does not form mixed micelles. The incorporation of polymer increases the critical micelle concentration of the surfactant. The viscosity for the surfactant–polymer system is higher than that for the pure polymer, demonstrating a surfactant-induced structuring.  相似文献   

8.
We showed in a previous study that a water-nonionic surfactant system, where the surfactant is a 9:1 mixture of tetraethylene glycol monodecyl ether (C(10)E(4)) and pentaethylene glycol monodecyl ether (C(10)E(5)), forms a disconnected lamellar (L(α)) phase. Thus, the isotropic phase spans the whole concentration range from the water-rich L(1) region to the surfactant-rich L(2) region of the phase diagram. The L(1) and L(2) regions are connected via an isotropic channel that separates the two regions of the L(α) phase. In this letter, we monitored the structural evolution of the isotropic phase along a path through this isotropic channel via (1)H NMR self-diffusion measurements. We used this technique because it enables us to distinguish between discrete and bicontinuous structures by comparing the relative self-diffusion coefficients (obstruction factors) D/D(0) of the solvents (i.e. of water and surfactant in the present case). We found that the obstruction factor of water decreases whereas the obstruction factor of the surfactant increases with increasing surfactant concentration and increasing temperature. This trend is interpreted as the transition from a water-continuous L(1) region, which contains discrete micelles, to a bicontinuous structure, which may extend to very high surfactant concentrations. Although there is good evidence of bicontinuity over a broad concentration range, there is no evidence of inverse micelles or any other microstructure at the highest concentration studied in the surfactant-rich L(2) phase.  相似文献   

9.
Photoresponsive association between azobenzene-modified poly(acrylic acid)s (AMPs) and the nonionic surfactants tetraethylene glycol monododecyl ether and octadecyl ether (C12E4 and C18E4) has been achieved in dilute aqueous solution. The binding was investigated by (i) spectrophotometry that probes the polarity close to the azobenzene chromophore, (ii) capillary electrophoresis to obtain the amount of C12E4 bound per polymer chain, and (iii) pressure-area curves of Langmuir films to obtain information on the adsorption of AMP at the water-C18E4 interface. Increasing hydrophobicity of AMP (with increasing degree of modification with azobenzene side-groups) tightened the association with C12E4 in the dark. Exposure to UV light rapidly converted the azobenzene to their more polar cis isomer, which in turn weakened the association with surfactant. Almost complete photorelease of bound C12E4 was obtained with the optimal structure of AMP. Adsorption on large interfaces is much less sensitive to light. The possible origin of the photoresponse is analyzed in terms of AMP affinity for surfactant assemblies and azobenzene penetration in the hydrophobic core of micelles. We propose that the photoswing of polarity is amplified by the binding to small micelles because of the small number of anchors involved. A few azobenzene anchors afford tight binding in the dark, but also detach more easily than the whole AMP chain upon photoisomerization.  相似文献   

10.
Russian Journal of General Chemistry - The micellization processes in the systems tetraethylene glycol monododecyl ether (C12E4)–heptane (1) and C12E4–Nile red–heptane (2) have...  相似文献   

11.
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.  相似文献   

12.
We used fluorescence quenching, vibronic band ratios and excimer fluorescence techniques to quantify the statistics of pyrene solubilization in nonionic octaethylene glycol monododecyl ether (C12E8) micelles. Using a two-phase model (aqueous and micellar pseudophases) to interpret fluorescence results, we found that all three of these experimental methods provide consistent information about pyrene partitioning between aqueous and micellar pseudophases. From dynamic quenching experiments we determined the pyrene partition coefficient and the average number of pyrene molecules solubilized per micelle over a range of surfactant concentrations. The pyrene partition coefficient increases with increasing surfactant concentration. We confirmed the partitioning results by excimer fluorescence measurements. Quenching results indicate that pyrene is accessible to Cu2+ quenchers even in the limit of high surfactant concentration where solubilized pyrene is in the infinite dilution limit in the micellar pseudophase. This suggests that solubilized pyrene resides in the micellar palisade layer. We determined the maximum number of pyrene solubilizates allowed per micelle (micellar solubilization capacity) by applying a three-phase model to fluorescence experiments conducted in the presence of solid phase pyrene. The estimated maximum capacity is 6 pyrene molecules per micelle. The three phase partitioning model successfully predicted the excimer fluorescence in the presence of solid pyrene.  相似文献   

13.
The extent of aggregation of nonionic surfactants can be controlled by the composition of mixed solvents with two miscible glycols, ethylene glycol (EG)/propylene glycol (PG). Three nonionic surfactants bearing a common E8 ethoxylated headgroup, but with variations in the hydrocarbon chain, have been investigated: octaethylene monododecyl ether (C12E8), octaethylene monotetradecyl ether (C14E8), and octaethylene monohexadecyl ether (C16E8). The hydrogen-bonding solvents were EG/PG mixtures at different PG levels, defined in terms of the concentration (mol %) of PG. Aggregation was investigated using small-angle neutron scattering (SANS) with h-CiE8 surfactants, at 10 and 5 wt %, in deuterated glycol solvents to improve contrast. Increasing PG concentration (mol %) in the background EG/PG solvent leads to a consistent decrease in the SANS intensity, until in pure d-PG only very weak scattering is observed. These SANS data were analyzed using cylinder or ellipsoidal form factors for the EG-rich and PG-rich systems, respectively, hence demonstrating an aggregate shape change as a function of solvent composition. The results show that aggregation of nonionic surfactants occurs in glycol solvents and that the EG:PG ratio may be used as an effective means to switch aggregation "on" or "off", as required.  相似文献   

14.
The self-assembly of dialkyl chain cationic surfactant dihexadecyldimethyl ammonium bromide, DHDAB, and nonionic surfactants monododecyl hexaethylene glycol, C(12)E(6), and monododecyl dodecaethylene glycol, C(12)E(12), mixtures has been studied using predominantly small-angle neutron scattering, SANS. The scattering data have been used to produce a detailed phase diagram for the two surfactant mixtures and to quantify the microstructure in the different regions of the phase diagram. For cationic-surfactant-rich compositions, the microstructure is in the form of bilamellar, blv, or multilamellar, mlv, vesicles at low surfactant concentrations and is in an L(beta) lamellar phase at higher surfactant concentrations. For nonionic-rich compositions, the microstructure is predominantly in the form of relatively small globular mixed surfactant micelles, L(1). At intermediate compositions, there is an extensive mixed (blv/mlv) L(beta)/L(1) region. Although broadly similar, in detail there are significant differences in the phase behavior of DHDAB/C(12)E(6) and DHDAB/C(12)E(12) as a result of the increasing curvature associated with C(12)E(12) aggregates compared to that of C 12E 6 aggregates. For the DHDAB/C(12)E(12) mixture, the mixed (blv/mlv) L(beta)/L(1) phase region is more extensive. Furthermore, C(12)E(12) has a greater impact upon the rigidity of the bilayer in the blv, mlv, and L(beta) regions than is the case for C(12)E(6). The general features of the phase behavior are also reminiscent of that observed in phospholipid/surfactant mixtures and other related systems.  相似文献   

15.
A systematic study on phase behavior of the mixture of nonionic surfactants with alcohols at 30.0+/-0.1 degrees C was carried out. The total surfactant concentration was kept to 0.1 M varying the mole ratio of n-octyl beta-d-glucopyranoside (OG) and tetraethylene glycol monododecyl ether. Two uniphasic regions were found, the lamellar phase at low OG mole fraction and micelles at high OG mole fraction. The presence of OG favors the lamellae-micelle transition. Alkanols and benzyl alcohol were used as cosurfactants. The more hydrophobic alcohols (octanol and decanol) increase the OG content in the mixed bilayers. On the contrary, benzyl alcohol is not as favorable to the OG incorporation in the lamellar phase as in the mixed micelles. The L(3) phase has only been found as a uniphasic region with hexanol.  相似文献   

16.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

17.
Understanding surfactant adsorption on surfaces at the molecular level will provide us with the ability to design specific surfactants for surface modification. We conducted molecular dynamics simulations for sodium dodecyl sulfate (SDS) and hexaethylene glycol monododecyl ether (C(12)E(6)) adsorbed on silica substrates with varying degree of hydroxylation. Our results shed light on the effects of hydroxylation on the surfactant aggregate morphology. The discrete charge distribution on the substrate surface appears to dictate both surfactant adsorption and aggregate morphology. The differences in aggregate morphology observed for anionic SDS and non-ionic C(12)E(6) on silica substrates are discussed quantitatively and compared to available experimental data.  相似文献   

18.
Surfactant-templated polymer films prepared from polyethylenimine (PEI), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monohexadecyl ether (C(16)E(8)) were examined and the effect of increasing the percentage of nonionic surfactant in the micelles measured using both surface and bulk-sensitive techniques. It was found that there is a strong interaction between CTAB and C(16)E(8), although no interaction between the C(16)E(8) and PEI was observed. Generally, increasing the percentage of C(16)E(8) in the micelles decreases both the thickness and degree of order in the films; however, it was observed, depending on the conditions, that films could still be formed with as little as 20% cationic surfactant. Experiments on the CTAB/Brij56/PEI system were also performed and these indicate that it is similar to the CTAB/C(16)E(8)/PEI system.  相似文献   

19.
Confinement effects of native calf thymus DNA interacting with the complex Cu(ii)-5-(triethylammoniummethyl)salicylidene ortho-phenylendiiminate (CuL(2+)) perchlorate in tetraethylene glycol monododecyl ether (C(12)E(4)) liquid crystals have been investigated by UV absorption spectrophotometry, circular dichroism (CD) and small angle X-ray scattering (SAXS). The results indicate the occurrence of dramatic structural changes of both the DNA and the CuL(2+)-DNA system, when going from aqueous solution to C(12)E(4) liquid crystals, due to confinement constrains imposed by the closed structure of C(12)E(4) reverse micelles. Further marked departures from the behaviour observed in aqueous solution have been emphasized by registering the spectral response of DNA and CuL(2+)-DNA confined in C(12)E(4) reverse micelles after thermal treatment. It has been also ascertained that the confinement causes the formation of a more compact and thermoresistant DNA structure accompanied by a transition from the right- to left-handed form while a tight CuL(2+)-DNA binding has been revealed by the appearance of a broad induced CD band in the range 350-450 nm. From a biological point of view, these findings stress the need to account for confinement effects and the peculiarity of drug-DNA interactions occurring within the intra-cellular environment.  相似文献   

20.
The adsorption of the non-ionic surfactants tetraoxyethylene glycol monododecyl ether (C(12)EO(4)), pentaoxyethylene glycol monododecyl ether (C(12)EO(5)), and hexaoxyethylene glycol monododecyl ether (C(12)EO(6)) to single crystal sapphire substrates has been studied using specular neutron reflection for solutions at the critical micelle concentration. The effects of temperature and pH of the solutions were studied as well as the differences between two different crystal faces, the C and the R planes. At neutral pH, significant adsorption was only observed when the temperature was raised above the cloud temperature. This adsorption was reversible and surfactant was displaced on cooling. Reducing the pH to 3 results in significantly increased adsorption of C(12)EO(5) at 25°C with a central layer consisting mainly of surfactant (about 90%) on the C-plane substrate. A slightly smaller surface excess was observed for the R-plane. This contrasts with the significantly lower density observed even at high temperatures at neutral pH on both substrates. The results suggest that for neutral solutions surfactant association above the cloud point is the primary driving force for adsorption. At low pH, specific interactions with protonated surfaces are important. The structures of the highly hydrated layers are similar to those found for the surfactants at hydrophilic silica surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号