首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.  相似文献   

2.
An experimental study was carried out to investigate condensation heat transfer and pressure drop characteristics of R-134a in a coiled double tube oriented with its helix axis in the vertical direction. Measurements were obtained at inlet pressure of 815 kPa for refrigerant mass flux ranging from 95 to 710 kg/m2s and cooling water Reynolds number varying from 1000 to 14000. Presented results illustrate the effects of refrigerant mass flux and average condensation temperature difference on the condensation heat transfer coefficient and pressure drop. Comparison with relevant data from other sources indicates a reasonable agreement. An empirical correlation was obtained for predicting condensation heat transfer coefficient. The present study may be considered of a practical and theoretical interest for the design of the helical double-tube condensers using R-134a as the working fluid. M. El-Sayed Mosaad is on leave from Mechanical Engineering Department, Mansoura University, Egypt.  相似文献   

3.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

4.
Among major components of LiBr–H2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5 < Re < 150 is performed numerically. The boundary layer assumptions are used for the mass, momentum and energy transport equations and the fully implicit finite difference method is employed to solve the governing equations. Dependence of lithium bromide aqueous properties to the temperature and concentration is employed as well as dependence of film thickness to vapor absorption. An analysis for linear distribution of wall temperature condition carries out to investigate the reliability of the present numerical method through comparing with previous investigation. The effect of plate angle on heat and mass transfer parameters is investigated and the results show that absorption mass flux and heat and mass transfer coefficient increase as the angle of the plate increase. The main parameters of absorber design, namely Nusselt and Sherwood numbers, are correlated as a function of Reynolds Number and the plate angle.  相似文献   

5.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

6.
The condensation heat transfer coefficients of R-22, R-134a and R-410A in a single circular microtube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The test section is a smooth, horizontal copper tube of 1.77 mm inner diameter. The experiments were conducted at mass flux of 450-1050 kg/m2 s, saturation temperature of 40 °C. The test results showed that in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski correlation. In case of two-phase flow, the condensation heat transfer coefficient of R-410A was higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensing heat transfer. And also, recently proposed correlation in the single circular microtube is considered not adequate for small diameter tube. Therefore, it is necessary to develop accurate and reliable correlation to predict heat transfer characteristics in the single circular microtube.  相似文献   

7.
A detailed experimental investigation is carried out to study the flow boiling heat transfer behavior of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture in smooth horizontal tubes of diameter 9.52 and 12.7 mm. The heat transfer coefficients of the mixture are experimentally measured under varied heat flux conditions for stratified flow patterns using a coaxial counter-current heat exchanger test section. The tests are conducted for refrigerant inlet temperatures between ?9 and 5 °C and mass flow rates ranging from 3 to 5 g s?1. Kattan–Thome–Favrat maps are used to confirm the flow patterns for the tested conditions. The magnitude of the heat transfer coefficient with respect to flow patterns and different mechanisms of boiling are discussed. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a for selected working conditions. The significance of nucleate boiling in the overall heat transfer process under these testing conditions is highlighted.  相似文献   

8.
Absorber is an important component in absorption machines and its characteristics have significant effects on the overall efficiency of absorption machines. This article reports a model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water––cooled vertical plate absorber in the Reynolds number range of 5 < Re < 150. The boundary layer assumptions were used for the transport of mass, momentum and energy equations and the fully implicit finite difference method was employed to solve the governing equations in the film flow. Dependence of lithium bromide aqueous properties to the temperature and concentration and film thickness to vapor absorption was employed. This model can predict temperature, concentration and properties of aqueous profiles as well as the absorption heat and mass fluxes, heat and mass transfer coefficients, Nusslet and Sherwood number of absorber. An analysis for linear distribution of wall temperature condition carries out to investigation the reliability of the present numerical method through comparing with previous investigation.  相似文献   

9.
An experimental investigation has been carried out to find the heat transfer coefficient during condensation of R-134a vapor inside a horizontal tube. Experiments were conducted for the condensation of R-134a inside a plain tube and tubes with different twisted tape inserts. Twisted tapes with different twisted ratios of 6, 9, 12 and 15 were inserted in the refrigerant side, one by one, in the full length of test-condenser. For each inserted tube and the plain tube, test runs were carried out for the mass velocities of 92, 110, 128 and 147 kg/s-m2. An empirical correlation has also been developed to predict the enhanced heat transfer coefficient.  相似文献   

10.
This paper presents the experimental results of condensation heat transfer coefficients of hydrocarbon (HC) refrigerants R-290 and R-600a, hydrochlorofluorocarbon (HCFC) refrigerant R-22, and hydrofluorocarbon (HFC) refrigerant R-134a in a horizontal double-pipe heat exchanger having pipe inner diameters of 10.07, 7.73, 6.54, and 5.80 mm. The condensation process experiments were conducted at mass flux of 35.5–210.4 kg/ms and condensation temperature of 40°C. The main results were summarized as follows: The average condensation heat transfer coefficients of R-290 and R-600a were higher than those of R-22 and R-134a. The pressure drops of the four refrigerants were in the order of R-600a > R-290 > R-134a > R-22. The pressure drops of R-600a, R-290, R-134a, and R-22 were approximately 6–15, 9.8–12.5, 4.3–6.7, and 2.1–4.6% higher, respectively, in the 10.7 mm diameter tubes compared to the 5.80 mm diameter tubes. Comparing the condensation heat transfer coefficients of our experimental results with those of other correlations, our experimental data in all the test tubes coincided best with that of Haraguchi et al.  相似文献   

11.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

12.
The present experimental study investigates the controlling mechanism involved in a new combined vertical film-type absorber-evaporator exchanger operating near the condition of the triple point of water. This peculiar exchanger plays the most important role in the VFVPE process that can be utilized in many industrial applications, water pollution prevention, desalination, and purification of chemicals, for example. The method of analogy of the heat and mass transfer near the film surface is used to calculate the interfacial concentration and temperature, and thus determining the heat and mass transfer coefficients. It is shown that the working temperature level has the negligible effect on the characteristics of the mass transfer. The mass transfer coefficients are higher than those obtained in the case of isothermal absorption due to the convective effect arisen from vapor absorption in the falling solution film. The water flow rate in the evaporator side has a minor effect on the performance of this combined exchanger. The overall mean heat transfer coefficient remains nearly constant in the lower range of the solution flow rate of the absorber; however, it would increase with increasing solution flow rate in the higher range. The correlating equations for both the heat and mass transfer coefficients are suggested.  相似文献   

13.
This article reports an experimental investigation on flow boiling heat transfer and pressure drop of refrigerant R-134a in a smooth horizontal and two microfinned tubes from different manufacturers with the same geometric characteristics. Experiments have been carried out in an experimental facility developed for change of phase studies with a test section made with 9.52 mm external diameter, 1.5 m long copper tubes, electrically heated by tape resistors wrapped on the external surface. Tests have been performed under the following conditions: inlet saturation temperature of 5 °C, vapor qualities from 5% to 90%, mass velocity from 100 to 500 kg/s m2, and a heat flux of 5 kW/m2. Experimental results indicated that the heat transfer performance was basically the same for both microfin tubes. The pressure drop is higher in the microfinned tubes in comparison to the smooth tube over the whole range of mass velocities and vapor qualities. The enhancement factor, used to evaluate the combination of heat transfer and pressure drop, is higher than one for both tubes for mass velocities lower than 300 kg/s m2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. Some images, illustrating the flow patterns, were obtained from the visualization section, located in the exit of the test section with the same internal diameter of the tested tube.  相似文献   

14.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

15.
An experimental investigation has been carried out to study the heat transfer characteristics during evaporation of R-134a inside a single helical microfin tube. The microfin tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of −90° to +90° and four mass velocities of 53, 80, 107 and 136 kg/m2 s for each tube inclination angle during evaporation of R-134a. The results demonstrate that the tube inclination angle, α, affects the boiling heat-transfer coefficient in a significant manner. For all refrigerant mass velocities, the best performing tube is that having inclination angle of α = +90°. The effect of tube inclination angle, α, on heat-transfer coefficient, h, is more prominent at low vapor quality and mass velocity. An empirical correlation has also been developed to predict the heat-transfer coefficient during flow boiling inside a microfin tube with different tube inclinations.  相似文献   

16.
This article describes experimental investigations of the heat transfer coefficient and pressure drop of R-134a flowing inside internally grooved tubes. The test tubes are one smooth tube and four grooved tubes. All test tubes are made from type 304 stainless steel, have an inner diameter of 7.1 mm, are 2,000 mm long and are installed horizontally. The test section is uniformly heated by a DC power supply to create evaporation conditions. The groove depth of all grooved tubes is fixed at 0.2 mm. The experimental conditions are conducted at saturation temperatures of 20, 25 and 30°C, heat fluxes of 5, 10 and 15 kW/m2, and mass fluxes of 300, 500 and 700 kg/m2 s. The effects of groove pitch, mass flux, heat flux, and saturation temperature on heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the grooved tubes have a significant effect on the heat transfer coefficient and frictional pressure drop augmentations.  相似文献   

17.
In this study, effect of electrohydrodynamic (EHD) on the condensation heat transfer enhancement and pressure drop of pure R-134a are experimentally investigated. The test section is a 2.5 m long counterflow double tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.52 mm outer diameter. The electrode is made from stainless steel wire of 1.47 mm diameter. The test runs are performed at average saturated temperatures ranging between 40 and 60°C, mass flux ranging between 200 and 600 kg/m2 s, heat flux ranging between 10 and 20 kW/m2 and applied voltage at 2.5 kV. For the presence of the electrode, the experimental results indicate that the maximum heat transfer enhancement ratio is around 30% while the maximum increase in pressure drop is about 25%.  相似文献   

18.
The in-tube cooling flow and heat transfer characteristics of R134a at supercritical pressures are measured experimentally for various pressures and mass fluxes in a horizontal tube. The tube is made of stainless steel with an inner diameter of 4.01 mm. Experiments are conducted for mass fluxes from 70 kg/m2 s to 405 kg/m2 s and pressures from 4.5 MPa to 5.5 MPa. The inlet refrigerant temperature is from 80 °C to 140 °C. The results show that the refrigerant temperature, the mass flux and the pressure all significantly affect the flow and heat transfer characteristics of R134a at supercritical pressures. The experimentally measured frictional pressure drop and heat transfer coefficient are compared with predicted results from several existing correlations. The comparisons show that the predicted frictional pressure drop using Petrov and Popov’s correlation accounting for the density and viscosity variations agree well with the measured data. Gnielinski’s correlation for the heat transfer coefficient agrees best with the measured data with deviations not exceeding 25%, while correlations based on supercritical CO2 heat transfer data overcorrect for the influence of the thermophysical property variations resulting in larger deviations. A new empirical correlation is developed based on the measured results by modifying Gnielinski’s equation with thermophysical property terms including both the property variations from the inlet to the outlet of the entire test section and from the bulk to the wall. Most of the experimental data is predicted by the new correlation within a range of 15%.  相似文献   

19.
For one horizontal tube in an absorber the Nusselt solution for film thickness and velocity distribution was applied, assuming steady state in heat transfer and a semi-infinite body’s concentration profile with unsteady state mass transfer. The model was applied to the absorption of steam into aqueous lithium bromide in absorption chillers. The results are compared to published experimental values and show fair agreement.  相似文献   

20.
Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 °C, heat fluxes of 20, 25, and 30 kW/m2, and mass fluxes of 200, 300, and 400 kg/m2 s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号