首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A few complexes of tin(IV) chloride with some Schiff bases have been prepared in benzene medium. The complexes are orange red in colour and amorphous. The elemental analysis shows that these are 1:1 or 1:2 adducts. They are nonelectrolytes in DMF. On the basis of the infrared spectra and conductance measurements the coordination number six and eight are proposed to the complexes.  相似文献   

2.
A series of [Au2(nixantphos)2](X)2 (nixantphos=4,6‐bis(diphenylphosphino)‐phenoxazine; X=NO3, 1 ; CF3COO, 2 ; CF3SO3, 3 ; [Au(CN)2], 4 ; and BF4, 5 ) complexes that exhibit intriguing anion‐switchable and stimuli‐responsive luminescent photophysical properties have been synthesized and characterized. Depending on their anions, these complexes display yellow ( 3 ), orange ( 4 and 5 ), and red ( 1 and 2 ) emission colors. They exhibit reversible thermo‐, mechano‐, and vapochromic luminescence changes readily perceivable by the naked eye. Single‐crystal X‐ray studies show that the [Au2(nixantphos)2]2+ cations with short intramolecular Au ??? Au interactions are involved as donors in an infinite N?H ??? X (X=O and N) hydrogen‐bonded chain formation with CF3COO? ( 2 C ) and aurophilically linked [Au(CN)2]? counterions ( 4 C ). Both crystals show thermochromic luminescence; their room temperature red ( 2 C ) and orange ( 4 C ) emission turns into yellow upon cooling to 77 K. They also exhibit reversible mechanochromic luminescence by changing their emission color from red to dark ( 2 C ), and orange to red ( 4 C ). Compounds 1 – 5 also display reversible mechanochromic luminescence, altering their emission colors between orange ( 1 ) or red ( 2 ) to dark, as well as between yellow ( 3 ) or orange ( 4 and 5 ) to red. Detailed photophysical investigations and correlation with solid‐state structural data established the significant role of N?H ??? X interactions in the stimuli‐responsive luminescent behavior.  相似文献   

3.
Yu J  Zhou L  Zhang H  Zheng Y  Li H  Deng R  Peng Z  Li Z 《Inorganic chemistry》2005,44(5):1611-1618
The syntheses, structures, and electroluminescent properties are described for two new lanthanide complexes Ln(HFNH)3phen [HFNH = 4,4,5,5,6,6,6-heptafluoro-1-(2-naphthyl)hexane-1,3-dione; phen = 1,10-phenanthroline; Ln = Eu3+ (1), Sm3+ (2)]. Both complexes exhibit bright photoluminescence at room temperature (RT) due to the characteristic emission of Eu3+ and Sm3+ ion. Several devices using the two complexes as emitters were fabricated. The performances of these devices are among the best reported for devices using europium complex and samarium complex as emitters. The device based on 1 with the structure ITO/TPD (50 nm)/1:CBP (10%, 40 nm)/BCP (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 957 cd/m2, current efficiency of 4.14 cd/A, and power efficiency of 2.28 lm/W with a pure red Eu3+ ion emission. Especially, at the high brightness of 200 cd/m2, the device of 1 still has a high current efficiency of 2.15 cd/A. The device of 2 with a three-layer structure of ITO/TPD (50 nm)/2 (50 nm)/BCP (20 nm)/LiF (1 nm)/Al (200 nm) gives the maximum brightness of 42 cd/m2, current efficiency of 0.18 cd/A. By the comparison of the electroluminescent properties of devices based on Eu(TTA3phen (TTA = 2-thenoyltrifluoroacteonate) and 1, we conclude that the polyfluoration on the alkyl group of the ligand and the introduction of the long conjugate naphthyl group into the ligand improve the efficiency of 1-doped devices, especially at high current densities.  相似文献   

4.
A novel Pt(II) terpyridine complex that has a nicotinamide moiety linked to the terpyridyl ligand has been synthesized in good yield and studied structurally and spectroscopically. The complex, [Pt(Nttpy)Cl](PF(6))(2) where Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2' '-terpyridine, is observed to be brightly luminescent in the solid state at room temperature and at 77 K. The complex exhibits reversible vapochromic behavior and crystallographic change in the presence of several volatile organic solvents. Upon exposure to methanol vapors, the complex changes color from red to orange, and a shift to higher energy is observed in the emission maximum with an increase in excited-state lifetime and emission intensity. The crystal and molecular structures of the orange and red forms, determined by single-crystal X-ray diffraction on the same single crystal, were found to be equivalent in the molecular sense and only modestly different in terms of packing. In both forms, the cationic Pt(II) complexes possess distorted square planar geometries. Analysis of the orange form's crystal packing reveals the presence of solvent molecules in lattice voids, Pt...Pt separations averaging 3.75 A and a zigzag arrangement between nearest neighbor Pt atoms, whereas the red form is devoid of solvent within the crystal lattice and contains complexes stacked with a nearly linear arrangement of Pt(II) ions having an average distance of 3.33 A. On the basis of the crystallographic data, it is evident that sorption of methanol vapor induces a change in intermolecular contacts and Pt...Pt interactions in going from red to orange. Disruption of the d(8)-d(8) metallophilic interactions consequently alters the emitting state from (3)[(d)sigma*-pi*(terpyridine)] that is formally a metal-metal-to-ligand charge transfer (MMLCT) state in the red form to one in which the HOMO corresponds to a more localized Pt(d) orbital in the red form ((3)MLCT).  相似文献   

5.
In the past decade a number of lanthanide com-plexes have been designed and synthesized for organic electroluminescent (EL) devices owing to their ex-tremely sharp emission bands and potentially high internal quantum efficiency[113]. This characteristic made the lanthanide complexes one kind of promising candidates for full color flat-panel displays which re-quire pure red, green and blue emissions. So far, how-ever, the devices based on lanthanide complexes as emitters have not demonstrated v…  相似文献   

6.
Substituents can induce dramatic changes in the photoluminescence properties of N,O‐chelated boron complexes. Specifically, the boron complexes of 2‐(benzothiazol‐2‐yl)phenols become bright deep blue‐ and orange‐red‐emitting materials depending on amino substituents at the 5‐ and 4‐positions of 2‐(benzothiazol‐2‐yl)phenol, respectively. Absorption and emission data show that the resulting boron complexes have little or small overlap between the absorption and emission spectra and, furthermore, X‐ray crystal structures for both the blue and orange‐red complexes indicate the absence of π–π stacking interaction in the crystal‐packing structures. These features endow the boron complexes with bright and strong photoluminescence in the solid state, which distinguishes itself from the typical boron complexes of dipyrromethenes (BODIPYs). A preliminary study indicates that the blue complexes have promising electro‐optical characteristics as dopant in an organic light‐emitting diode (OLED) device and show chromaticity close to an ideal deep blue. The substituent effects on the photoluminescent properties may be used to tune the desired emission wavelength of related boron or other metal complexes.  相似文献   

7.
The synthesis, crystal structure and luminescence properties of three cyclometalated Ir(III) complexes of general formula [(ppy)(2)Ir(pam)]X, where X = Cl(-) (1), PF(6)(-) (2), ClO(4)(-)(3), and pam = 2-picolylamine, are described. While 2 and 3 crystallize in a unique form, two pseudo-polymorphs, a solvated (1a) and a non-solvated (1b) species, have been observed for compound 1. 1a crystallizes in the monoclinic centrosymmetric space group P2(1)/c. On the contrary, 1b, 2 and 3 crystallize in the non-centrosymmetric space group P2(1)2(1)2(1) (1b) and Pca2(1) (2 and 3), respectively. All the crystalline supramolecular materials have been fully photophysically characterized. While 1 shows a bright blue-green emission in both solution and solvated crystalline state 1a, crystals of 1b, 2 and 3 show a significantly red shifted emission with respect to solution. Unexpectedly, and differently from 1a, mechanical stimuli-responsive colour and luminescence changes have been observed for 1b, 2 and 3. Upon mechanical grinding the colour of the crystalline solids changes from orange to yellow while the emission energy is partially (2 and 3) or completely (1b) converted from orange to green. The grinding-triggered colour and luminescence changes have been attributed to a crystal-to-amorphous phase conversion for all crystalline solids.  相似文献   

8.
A series of platinum(II) complexes with 1,3-bis(2-pyridylimino)isoindoline (BPI) derivatives were prepared by substitution of the coordinated Cl in the precursor complex Pt(BPI)Cl with a N-heterocyclic ligand such as pyridine, phthalazine or phenanthridine. These complexes display orange to red luminescence in fluid dichloromethane solutions and in the solid states at room temperature. The photophysical properties were tuned by introducing electron-withdrawing -NO(2) or electron-donating -NH(2) to the BPI ligand. The DFT computational studies suggest that the emission in the N-heterocyclic ligand substituted platinum(II) complexes originates mainly from the (3)[π→π*(BPI)] (3)IL triplet excited state, mixed with some (3)[dπ(Pt)→π*(BPI)] (3)MLCT character. Compared with the precursor Pt(BPI)Cl, both the low-energy absorption and the emission in the N-heterocyclic ligand substituted platinum(II) complexes exhibits a distinct blue-shift due to an obviously enhanced contribution from the (3)IL state and a reduced (3)MLCT character.  相似文献   

9.
Neutral mononuclear Cu(I) complexes and their counterparts with counterion, i.e. Cu(qbm)(PPh(3))(2), Cu(qbm)(DPEphos), [Cu(Hqbm)(PPh(3))(2)](BF(4)) and [Cu(Hqbm)(DPEphos)](BF(4)), where Hqbm = 2-(2'-quinolyl)benzimidazole, DPEphos = bis[2-(diphenylphosphino)phenyl]ether, have been synthesized and characterized by X-ray structure analyses. All of the four complexes in solid state exhibit a strong phosphorescence band in the orange spectral region at room temperature. The photophysical properties of these complexes in both methylene chloride solution and poly(methyl methacrylate) film have been studied. Compared to the related cationic complexes, the neutral ones show blue-shifted emissions and longer lifetimes that can be attributed to the additional ligand-centered π-π* transition beside traditional metal-to-ligand charge-transfer (MLCT). By doping these complexes in N-(4-(carbazol-9-yl)phenyl)-3,6-bis(carbazol-9-yl) carbazole (TCCz), multilayer organic light-emitting diodes (OLEDs) were fabricated with the device structure of ITO/PEDOT/TCCz: Cu(I) (10 wt%)/BCP/Alq(3)/LiF/Al. The neutral complex Cu(qbm)(DPEphos) exhibits a higher current efficiency, up to 8.87 cd A(-1), than that (5.58 cd A(-1)) of its counterpart [Cu(Hqbm)(DPEphos)](BF(4)).  相似文献   

10.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

11.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   

12.
This review covers crystallographic and structural data for almost fifty polymeric FeM complexes (M = transition Cu, Ag, Au, Mo, W, Mn, Co, Ni and Pt and lanthanide elements Sm, Er and Yb) where iron is involved in polymeric chains. The complexes are for the most part yellow or black, but there are complexes of brown, orange, red, purple, blue and green colour. The complexes crystallized in the monoclinic (by far prevails), triclinic, tetragonal, orthorhombic, trigonal, hexagonal and rhombohedral crystal classes. The iron atoms are found in oxidation states 0, +2 and +3, of which +3 by far prevails. The inner coordination spheres about the Fe(0) atom are tetrahedral (FeC4) or sandwiched (FeC10), Fe(II) atoms are six-coordinated, and Fe(III) are six or even seven-coordinated. The inner coordination about M atoms range from four- through six- to eight-coordinated. The shortest Fe-Fe, Fe-M (transition) and Fe-M (lanthanide) and M-M separations are: 8.08 Å, 3.033 Å for Fe-Cu, 3.010 Å for Fe-Yb and 2.505 Å for Mo-Mo.  相似文献   

13.
The formation of vanadium(III) complexes with nuclearity greater than two is believed to occur in aqueous solution on the basis of potentiometric, electrochemical, and/or UV-vis spectroscopy titration measurements, although structural evidence for this is limited. Upon the addition of 1-2 equiv of acetate, propionate, chloroacetate, trifluoroacetate, or bromoacetate to an aqueous, acidic solution of vanadium(III), trinuclear and tetranuclear complexes are formed. The structures of [V4(mu-OH)4(mu-OOCCF3)4(OH2)8]Cl4.7.5H2O (1), [V4(mu-OH)4(mu-OOCCH3)4(OH2)8]Cl4.CH3COOH.12H2O (2), [V4(mu-OH)4(mu-OOCCH3)4(OH2)8]Cl4.3H2O (3), [V3(mu3-O)(mu-OOCCH2Br)6(OH2)3]CF3SO3.H2O (4), [V3(mu3-O)(mu-OOCCH2CH3)6(OH2)3]Cl.2H2O (5), [V3(mu3-O)(mu-OOCCH3)6(OH2)3]Cl.3.5H2O (6), and [V3(mu3-O)(mu-OOCCH2Cl)6(OH2)3]CF3SO3.H2O (7) have been determined by X-ray diffraction. Importantly, electrospray mass spectrometry and 1H NMR measurements suggest that these complexes are not purely solid-state phenomena but are also present in solution. For the vanadium(III)/acetate and vanadium(III)/propionate systems, two paramagnetic 1H NMR signals corresponding to two distinct complexes (species A and B) are observed in the 40-55 ppm region for 0.20 mol equiv of acetate or propionate, at pD 3.44. No corresponding signals are observed for the vanadium(III)/bromoacetate and vanadium(III)/chloroacetate systems under the same conditions or for the vanadium(III)/ trifluoroacetate system using 19F NMR spectroscopy. UV-vis spectra suggest that species B are structurally analogous for the vanadium(III)/acetate and vanadium(III)/propionate systems, whereas structurally different complexes are the major species for the other systems. Diffusion coefficients of species B for the vanadium(III)/acetate and vanadium(III)/propionate systems determined by pulsed-field-gradient spin-echo NMR spectroscopy measurements are (3.0 +/- 0.1) x 10-6 and (3.23 +/- 0.01) x 10-6 cm2 s-1, respectively, and are most consistent with species B being trimeric, rather than tetranuclear, complexes.  相似文献   

14.
The synthesis, solution and solid state structural characterization, photophysical and electrochemical properties of two redox forms of an electrochromic copper-bis(4,4′-dimethyl-6,6′-diphenyl-2,2′-bipyridine) complex, [Cu(3)2]n (n=+1, +2), are presented. Both complexes were characterized in the solid state by X-ray diffraction methods on single-crystals showing that both forms exist in a pseudo-tetrahedral coordination, and a comparison with other structures was made. Like most copper(I) complexes, the red [Cu(3)2]+ complex shows a rather weak emission (Φem=2.7×10−4, dichloromethane). The lifetime of the emitting MLCT state is 34±1 ns, as observed with time resolved emission, and transient absorption (in deoxygenated dichloromethane). Typical emission and transient absorption spectra are presented. The transient absorption spectra indicate that the MLCT state absorbs stronger than the ground state, which is relatively uncommon for metal bipyridine complexes, i.e. no ground state bleaching is observed. The green [(3)2Cu]2+ complex does not show any observable emission or transient absorption, which is a common feature for Cu(II) complexes of this type. The electronic absorption spectra of the chemically and electrochemically produced copper(I/II) complexes are identical. The repeated electrochemical conversion of the Cu(I) center into Cu(II) and vice versa does not cause any decomposition. This is consistent with a fully reversible Cu(I)/Cu(II) redox couple in the corresponding cyclic voltammogram, (E1/2 (Cu(I)/Cu(II))=+0.68 V vs. SCE=+0.23 V vs. Fc/Fc+). These observations indicate that no large structural reorganization occurs upon electrochemical timescales (sub second), and that the different ways of generating the complexes does not effect their final structure, apart from the small differences observed in the X-ray structures of both forms. These characteristics make these complexes rather well suited for their incorporation into an electrochromic display configuration.  相似文献   

15.
Liu QD  Jia WL  Wang S 《Inorganic chemistry》2005,44(5):1332-1343
Five new 2-(2'-pyridyl)benzimidazole derivative ligands, 1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,4-bmb), 4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl (bmbp), 1-bromo-4-[2-(2'-pyridyl)benzimidazolyl]benzene (Brmb), 1,3-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,3-bmb), and 1,3,5-tris[2-(2'-pyridyl)benzimidazolyl]benzene (tmb), have been synthesized by Ullmann condensation methods. The corresponding mononuclear and polynuclear PtII complexes, Pt2(1,4-bmb)Ph4 (1), Pt2(bmbp)Ph4 (2), Pt(Brmb)Ph2 (3), Pt2(1,3-bmb)Ph4 (4), and Pt3(tmb)Ph6 (5), have been obtained by the reaction of the appropriate ligand with [PtPh2(SMe2)]n. The structures of the free ligands 1,4-bmb, bmbp, and tmb, as well as the complexes 1-3, were determined by single-crystal X-ray diffraction. All ligands display fluorescent emissions in the purple/blue region of the spectrum at ambient temperature and phosphorescent emissions in the blue/green region at 77 K, which are attributable to ligand-centered pi --> pi* transition. No ligand-based emission was observed for the PtII complexes 1-5. All PtII complexes display orange/red emissions at 77 K in a frozen solution or in the solid state, attributable to metal-to-ligand charge transfers (MLCT). Variable-temperature 1H NMR experiments establish that complexes 1, 4, and 5 exist in isomeric forms in solution at ambient temperature due to the hindered rotation of the square PtC2N2 planes in the complexes.  相似文献   

16.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   

17.
Guanosine‐5′‐hydroxamic acid ( 3 ) forms hydrogels when mixed with guanosine ( 1 ) and KCl. The 5′‐hydroxamic acid (HA) unit is pH‐responsive and also chelates Fe3+. When gels are prepared under basic conditions, the 5′‐HA groups are deprotonated and the anionic hydrogel binds cationic thiazole orange (TO), signaled by enhanced fluorescence. The HA nucleoside 3 , when immobilized in the G‐quartet gel, acts as a supramolecular siderophore to form red complexes with Fe3+. We patterned the hydrogel's surface with FeCl3, by hand and by using a 3D printer. Patterns form instantly, are visible by eye, and can be erased using vitamin C. This hydrogel, combining self‐assembled G‐quartet and siderophore–Fe3+ motifs, is strong, can be molded into different shapes, and is stable on the bench or under salt water.  相似文献   

18.
A new ligand [C28H20N6O8] (L2) has been synthesized by the condensation reaction of 3-hydroxy-4-nitrobenzaldehydenephenylhydrazine (L1) with diethyloxalate. This ligand L2 is allowed to react with bis(ethylenediamine)Cu(II)/Ni(II)/Zn(II) complexes. It affords [(L2)Cu(en)2]Cl2(1)/[(L2)Ni(en)2]Cl2(2)/[(L2)Zn(en)2]Cl2(3) complexes, respectively. These complexes (1-3) have been characterized by the spectral and analytical techniques. The interaction of these complexes with calf thymus (CT) DNA is characterized by the absorption spectra which exhibit a slight red shift with hypochromic effect. Electrochemical analyses and viscosity measurements have also been carried out to determine the mode of binding. The shift in ΔEp, E1/2 and Ipc values explores the interaction of CT DNA with the above metal complexes. The slight increase in the viscosity of CT DNA indicates that these complexes bind to CT DNA through a partial non-classical intercalative mode. Cleavage experiments using pBR322 DNA in presence of H2O2 indicate that these complexes behave as efficient artificial chemical nucleases in the order of 1>2>3. Moreover, the antibacterial and antifungal studies reveal that complex 1 is highly active against the bacterial and fungal growth.  相似文献   

19.
The interaction of a new derivative of thiazole orange (TO-3) with calf thymus DNA (ctDNA) has been investigated by fluorescence and absorption spectroscopy. When TO-3 binds to ctDNA, absorption bands exhibit significant hypochromicity at low base pair/dye ratio (BP/D ratio), and high BP/D show hyperchromicity with red shift. The spectral changes are attributed to the different species formed between TO-3 and ctDNA in the titration course of the dye molecule with DNA. Multivariate curve resolutions–alternating least squares (MCR–ALS) is applied to the absorption measurements recorded to recover the concentration profiles and the pure spectra of the DNA/TO-3 complexes involved in the process. The binding constant and size of the binding site have been determined spectrophotometrically using the McGhee von Hippel equation. MCR–ALS has been used to reveal the precise concentration profiles of all detectable species formed between ctDNA and TO-3 and their pure spectral profiles.  相似文献   

20.
Five novel silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3- thienyl)ethene (cis-dbe) were synthesized and are characterized in this paper. Treatment of AgCF(3)SO(3) or AgCF(3)CO(2) with cis-dbe afforded [Ag(2)(cis-dbe)(CF(3)SO(3))(2)] (1) and [Ag(2)(cis-dbe)(CF(3)CO(2))(2)] (2), and both complexes exhibit a 1-D infinite chain structure with two cyano groups and two thienyl groups of the ligand bridging four metal ions. Reaction of AgC(n)()F(2)(n)(+1)CO(2) with cis-dbe gave rise to an unprecedented cocrystallization of a 2-D sheet structure, [Ag(2)(cis-dbe)(C(n)F(2)(n)(+1)CO(2))(2)], where n = 2 (3), 3 (4), and 4 (5). Upon irradiation with 450 nm light, these five silver(I) complexes turned orange or red from yellow, and the color reverted to yellow on exposure to 560 nm light, indicative of the reversible cyclization/ring-opening reaction occurring in the crystalline phase. Furthermore, different anions gave not only the different structural dimensions but also the different photoresponsive patterns. The correlation between the crystal structures and the photochromic reactivity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号