首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal phosphates such as LiFePO(4) have been recognized as very promising electrodes for lithium-ion batteries because of their energy storage capacity combined with electrochemical and thermal stability. A key issue in these materials is to unravel the factors governing electron and ion transport within the lattice. Lithium extraction from LiFePO(4) results in a two-phase mixture with FePO(4) that limits the power characteristics owing to the low mobility of the phase boundary. This boundary is a consequence of low solubility of the parent phases, and its mobility is impeded by slow migration of the charge carriers. In principle, these limitations could be diminished in a solid solution, Li(x)FePO(4). Here, we show that electron delocalization in the solid solution phases formed at elevated temperature is due to rapid small polaron hopping and is unrelated to consideration of the band gap. We give the first experimental evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled. Furthermore, the exquisite frequency sensitivity of M?ssbauer measurements provides direct insight into the electron hopping rate.  相似文献   

2.
A highly ordered interface between LiFePO(4) phase and FePO(4) phase with staging structure along the a axis and perpendicular to the b axis direction has been observed for the first time, in a partially chemically delithiated Li(0.90)Nb(0.02)FePO(4) by advanced aberration-corrected annular-bright-field (ABF) scanning transmission electron microscopy (STEM).  相似文献   

3.
The electrochemical phase transformation of carbon coated nanophase (60–70 nm) FePO4 to LiFePO4 was investigated by use of the Avrami–Johnson–Mehl–Eroofev equation. The analysis at three temperatures showed an Avrami exponent equal to one. Based upon reinterpretation and in agreement with recent microstructural evidence, a two-dimensional growth mechanism for the phase transformation is proposed in which the new phase grows in a direction perpendicular to the direction of lithium ion transport. Furthermore, the relatively low value of the activation energy for the phase transformation of 13 kJ/mol suggests that the phase transition is controlled by lithium ion diffusion along the phase boundary.  相似文献   

4.
Here we report the observation of electron delocalization in nano-dimension xLiFePO(4):(1 - x)FePO(4) (x = 0.5) using high temperature, static, (31)P solid state NMR. The (31)P paramagnetic shift in this material shows extreme sensitivity to the oxidation state of the Fe center. At room temperature two distinct (31)P resonances arising from FePO(4) and LiFePO(4) are observed at 5800 ppm and 3800 ppm, respectively. At temperatures near 400 °C these resonances coalesce into a single narrowed peak centered around 3200 ppm caused by the averaging of the electronic environments at the phosphate centers, resulting from the delocalization of the electrons among the iron centers. (7)Li MAS NMR spectra of nanometre sized xLiFePO(4):(1 - x)FePO(4) (x = 0.5) particles at ambient temperature reveal evidence of Li residing at the phase interface between the LiFePO(4) and FePO(4) domains. Moreover, a new broad resonance is resolved at 65 ppm, and is attributed to Li adjacent to the anti-site Fe defect. This information is considered in light of the (7)Li MAS spectrum of LiMnPO(4), which despite being iso-structural with LiFePO(4) yields a remarkably different (7)Li MAS spectrum due to the different electronic states of the paramagnetic centers. For LiMnPO(4) the higher (7)Li MAS paramagnetic shift (65 ppm) and narrowed isotropic resonance (FWHM ≈ 500 Hz) is attributed to an additional unpaired electron in the t(2g) orbital as compared to LiFePO(4) which has δ(iso) = -11 ppm and a FWHM = 9500 Hz. Only the delithiated phase FePO(4) is iso-electronic and iso-structural with LiMnPO(4). This similarity is readily observed in the (7)Li MAS spectrum of xLiFePO(4):(1 - x)FePO(4) (x = 0.5) where Li sitting near Fe in the 3+ oxidation state takes on spectral features reminiscent of LiMnPO(4). Overall, these spectral features allow for better understanding of the chemical and electrochemical (de)lithiation mechanisms of LiFePO(4) and the Li-environments generated upon cycling.  相似文献   

5.
Vibrational spectroscopy was utilized to investigate the local structure of LiFePO(4), NaFePO(4), and FePO(4). The factor group splitting of the intramolecular PO(4)(3-) vibrations is between 10 and 20 cm(-1) less for NaFePO(4) than for LiFePO(4). This is because Li(+) ions have a higher charge density than Na(+) ions and can form stronger coordinative bonds with the PO(4)(3-) anions. Thus, the internal modes are more perturbed in LiFePO(4) and exhibit larger factor group splitting effects. The similarity of the factor group multiplets for both LiFePO(4) and NaFePO(4), particularly the PO(4)(3-) bending modes, strongly suggests that the 506 and 470 cm(-1) bands of LiFePO(4) consist almost entirely of lithium translatory motion. There are marked differences between the vibrational spectrum of FePO(4) and those of LiMPO(4) (M=Mn, Fe, Co, or Ni) or NaFePO(4). The monovalent cations interact with the oxygen atoms of the phosphate groups, affecting the frequencies and intensities of the intramolecular PO(4)(3-) modes, in a manner that is absent in FePO(4).  相似文献   

6.
LiFePO4 is an important cathode material for lithium‐ion batteries. Regardless of the biphasic reaction between the insulating end members, LixFePO4, x≈0 and x≈1, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid‐state electrochemical reactions in which the Li concentrations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long‐range ordering at metastable intermediate eutectic composition of Li2/3FePO4 has now been discovered and its superstructure determined, which reflected predominant polaron crystallization at the Fe sites followed by Li+ redistribution to optimize the Li? Fe interactions.  相似文献   

7.
The electronic structure of the phospho-olivine Li(x)FePO4 was studied using soft-x-ray-absorption (XAS) and emission spectroscopies. Characteristic changes in the valence and conduction bands are observed upon delithation of LiFePO4 into FePO4. In LiFePO4, the Fe-3d states are localized with little overlap with the O-2p states. Delithiation of LiFePO4 gives stronger hybridization between Fe-3d states and O-2p states leading to delocalization of the O-2p states. The Fe L-edge absorption spectra yield "fingerprints" of the different valence states of Fe in LiFePO4 and FePO4. Resonant soft-x-ray-emission spectroscopy at the Fe L edge shows strong contributions from resonant inelastic soft x-ray scattering (RIXS), which is described using an ionic picture of the Fe-3d states. Together the Fe L-edge XAS and RIXS study reveals a bonding character of the Fe 3d-O2p orbitals in FePO4 in contrast to a nonbonding character in LiFePO4.  相似文献   

8.
激光促进乙烯在磷酸铁上的表面反应   总被引:1,自引:0,他引:1  
激光促进表面反应;丁二烯;激光促进乙烯在磷酸铁上的表面反应  相似文献   

9.
10.
11.
Polypyrrole–FePO4 powder was synthesized by an oxidative polymerization of pyrrole monomer on the surface of FePO4 powder. The polymerization reaction was initiated using hydrogen peroxide in an acidified solution and catalysed with Fe3+. The samples were investigated by light microscopy (LM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). These methods confirmed the presence of polypyrrole on FePO4 particles and its homogeneous distribution in the composite material. To determine the PPy content in the PPy–FePO4 composites a thermogravimetric analysis was used. Cyclic voltammetry curves (CV) were measured and compared in a non-aqueous lithium salt solution for electrodes consisting of pellets made from pure FePO4 and FePO4/PPy. Electrochemical impedance spectroscopy (EIS) showed that coating of PPy significantly decreases the charge transfer resistance of PPy–FePO4 electrodes.  相似文献   

12.
Through soft X-ray absorption spectroscopy, hard X-ray Raman scattering, and theoretical simulations, we provide the most in-depth and systematic study of the phase transformation and (de)lithiation effect on electronic structure in Li(x)FePO(4) nanoparticles and single crystals. Soft X-ray reveals directly the valence states of Fe 3d electrons in the vicinity of Fermi level, which is sensitive to the local lattice distortion, but more importantly offers detailed information on the evolution of electronic states at different electrochemical stages. The soft X-ray spectra of Li(x)FePO(4) nanoparticles evolve vividly with the (de)lithiation level. The spectra fingerprint the (de)lithiation process with rich information on Li distribution, valency, spin states, and crystal field. The high-resolution spectra reveal a subtle but critical deviation from two-phase transformation in our electrochemically prepared samples. In addition, we performed both first-principles calculations and multiplet simulations of the spectra and quantitatively determined the 3d valence states that are completely redistributed through (de)lithiation. This electronic reconfiguration was further verified by the polarization-dependent spectra collected on LiFePO(4) single crystals, especially along the lithium diffusion direction. The evolution of the 3d states is overall consistent with the local lattice distortion and provides a fundamental picture of the (de)lithiation effects on electronic structure in the Li(x)FePO(4) system.  相似文献   

13.
He  Jielong  Bai  Zhe  Huang  Xinping  Zhang  Zhengyu  Lu  Lu  Li  Jun 《Journal of Solid State Electrochemistry》2023,27(1):171-182
Journal of Solid State Electrochemistry - In this work, Li1.2Ni0.13Co0.13Mn0.54O2 was prepared by the sol–gel method and coated with FePO4. The experimental results show that the material...  相似文献   

14.
The phase balance and electric properties of products in the systems Li6MoN4–Li7NbN4 and Li6WN4–Li7TaN4 are studied. It is shown that continuous series of solid solutions whose lithium-cation conductance decreases during mutual doping exist in either system. The activation energies for the long- and short-range motion of lithium charge carriers, determined from the electroconductance and 7Li NMR data, equal 55 and 46 or 25 and 14 kJ mol–1 for the initial compounds of the first and second systems, respectively. The difference that large is attributed to a large contribution of the coulombic correlation for the hops of lithium charge carriers in both systems. Basic parameters of the correlation (time, distance, relaxation time) are calculated from experimental data. The strong correlation in the systems is presumed to stem from a weak screening of the coulombic field in the nitrides, rather than from a high concentration of charge carriers.  相似文献   

15.
梁敬魁  张预民 《化学学报》1986,44(2):117-124
本文用X射线衍射(高温、室温)和热分析(DTA、DSC、TGA)等方法测定了Li~2SO~4-MgSO~4和Li~2SO~4-Li~4SO~4体系相图,并研究了化合物的性能和晶体结构。Mg~4Li~2(SO~4)~5在840℃由包晶反应形成,它在105℃分解为Li~2SO~4为基的固溶体和MgSO~4.在105℃反应时,形成每摩尔的Mg~4Li~2(SO~4)~5吸热2.57kJ,反应激活能为173.5kJ/mol. Mg~4Li~2(SO~4)~5属正交晶系,在180℃的点阵常数α=8.577A,b=8.741A, c=11.918A, 可能的空间群为P222或Pmmm,Z=2。Li~8-2x(SiO~4)~2-x(SO~4)~x是在953℃由包晶反应形成的新相.随着温度的降低,相区扩大,在室湿x=0.96-0.58.该相属正交晶系,空间群为Pmmn,Z=2.晶体的点阵常数在x=0.8时有一定最大值,a=5.002A,b=6.173A, c=10.608A.Li~g-2x(SiO~4)~2-x(SO~4)~x在空气中能吸收7.6wt%的水蒸汽和其他气体,脱水温度高于350℃,水份的吸脱不改变晶体结构,与沸石分子筛具有相似性质,脱水激活能为171.5kJ/mol.熔化后的Li~2SO~4-MgSO~4和Li~2SO~4-Li~4SiO~4试样以10℃/min速率降温,分别形成亚稳态共晶体系。  相似文献   

16.
The phase equilibria as well as the properties and crystal structures of the compounds formed in both Li2SO4-MgSO4 and Li2SO4-Li4SiO4 systems have been studied by means of x-ray diffraction technique (at high and room temperatures) as well as by the thermal analyses (DTA, DSC, TGA, etc.). In Li2SO4-MgSO4 system there exists a compound Mg4Li2(SO4)5 formed by peritectic reaction at 840°C and decomposed at 105°C into the Li2SO4-base solid solution and MgSO4 · Mg4Li2(SO4)5 and Li2SO4-base solid solution conduct an eutectic reaction at 663°C with the composition of eutectic point lying in 22 mol% MgSO4. The solubility of MgSO4 in Li2SO4 is a little smaller than 10 mol% while at the same time the Li2SO4 phase transition temperature decreases from 574 to 560°C On the other hand, no noticeable solid solubility of Li2SO4 in MgSO4 has been observed. The reaction is an endothermal one and its heat of formation is 2.57 kJ/mol. The activation energy of the reaction calculated by thermal peak displacement method at various heating rates is 173.5 kJ/mol (1.80 ev). The crystal Mg4Li2(SO4)5 belongs to orthorhombic system with lattice parameters at 180°C: a = 8.577, b=8.741, c= 11.918 Å. The space group seems to be either P222 or P mmm. Assuming that there are two formula units in a unit cell, the density calculated is then 2.20 g/cm3 very close to that of Li2SO4 or MgSO4. Meanwhile, in Li2SO4-Li4SiO4 system a new phase Li8-2x(SiO4)8-x(SO4)x is formed by peritectic reaction at 953°C with a range of composition x=0.96 ?0.58. The crystal belongs to ortho-rhombic system with lattice parameters at x=0.8: a = 5.002, b= 6.173 and c=10.608Å. The density observed is 2.31 g/cm3 and there are 2 formula units in an unit cell. It is shown from the measurements of piezoelectric and laser SHG coefficients of the crystal that the crystal posseses a symmetrical center with the space group belonging to P mmn. The lattice parameter c has a maximum at x=0.8. In the air Li8-2x(SiO4)2-x(SO4)x can absorb 7.6 wt% water vapour and other gases which can only be desorbed by heating it at a temperature above 350°C. Neither absorption nor desorbtion can change its crystal structure, a characteristic similar to that of zeolite molecular sieve. The dewater activation energy of Li8-2x(SiO4)2-x(SO4)x is 171.5 kJ/mol. Li8-2x(SiO4)2-x(SO4)x and Li4SO4 bring about an eutectic reaction at 823°C with its eutectic composition being 12 mol% Li4SiO4. No observable solubility of Li4SiO4 in Li3SO4 has been noticed. The solubility of Li2SO4 in Li4SiO4 is approximately equal to 5 mol%. With Li2SO4 being dissolved in, the phase transition temperature of Li4SiO4 is decreased. After being fused, the specimens Li3SO4-MgSO4 and Li2SO4-Li4SiO4 are cooled at a rate of 10°C/min, their metastable eutectic systems are resulted respectively.  相似文献   

17.
The hydrogen storage properties of Li(7)VN(4) and Li(7)MnN(4) were investigated both by experiment and by density functional theory calculations. Li(7)VN(4) did not sorb hydrogen under our experimental conditions. Li(7)MnN(4) was observed to sorb 7 hydrogen atoms through the formation of LiH, Mn(4)N, and ammonia gas. An applied pressurized mixture of H(2)/Ar and H(2)/N(2) gases was helpful to mitigate the release of NH(3) but could not prevent its formation. The introduction of N(2) also caused weight gain of the sample by re-nitriding the absorbed products LiH and Mn(4)N, which correlated with the presence of Li(2)NH, LiNH(2), and Mn(2)N detected by X-ray diffraction. While our observed results for Li(7)VN(4) and Li(7)MnN(4) differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides.  相似文献   

18.
Heats of transition among the Li2WO4 polymorphs, Li2WO4I (phenacite-type structure), Li2WO4II, Li2 WO4III, and Li2WO4IV, and that between Li2MoO4 (phenacite) and Li2MoO4(spinel) were measured by transposed temperature drop calorimetry. The heats of fusion of Li2WO4I and Li2MoO4(ph) were also obtained. Using these data, the phase boundaries among the polymorphs of Li2WO4 and of Li2MoO4 were calculated. The calculated phase diagrams were compared with those reported previously. They agree well for Li2WO4 but show significant discrepancies, perhaps related to problems in attaining equilibrium at lower temperature, for Li2MoO4.  相似文献   

19.
Kinetics and Catalysis - The catalytic application of FePO4 synthesized by various chemical routes for the conversion of p?nitrophenol to p-aminophenol was investigated. The catalyst...  相似文献   

20.
Layered Li[Li0.16Ni0.21Mn0.63]O2 and Li[Li0.2Ni0.2Mn0.6]O2 compounds were successfully synthesized by radiated polymer gel (RPG) method. The effect of deficient Li on the structure and electrochemical performance was investigated by means of X-ray diffraction, X-ray absorption near-edge spectroscopy and electrochemical cell cycling. The reduced Ni valence in Li[Li0.16Ni0.21Mn0.63]O2 leads to a higher capacity owing to faster Li+ chemical diffusivity relative to the baseline composition Li[Li0.2Ni0.2Mn0.6]O2. Cyclic voltammograms (CV) and a simultaneous direct current (DC) resistance measurement were also performed on Li/Li[Li0.16Ni0.21Mn0.63]O2 and Li/Li[Li0.2Ni0.2Mn0.6]O2 cells. Li[Li0.16Ni0.21Mn0.63]O2 shows better electrochemical performance with a reversible capacity of 158 mA hg−1 at 1C rate at 20 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号