首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.  相似文献   

3.
Russian Journal of Organic Chemistry - A procedure has been proposed for the synthesis of a series of substituted N-(1,3-thiazol-2-yl)-pyrimidin-2-amines and N-(pyrimidin-2-yl)thioureas by...  相似文献   

4.
吲哚马来酰亚胺类蛋白激酶C抑制剂的研究进展   总被引:1,自引:0,他引:1  
赵圣印  邵志宇  钦维民  张灯青 《有机化学》2008,28(10):1676-1684
吲哚马来酰亚胺类化合物是对星型孢菌素进行结构改造而得到的一类新型蛋白激酶C抑制剂. 对近年来吲哚马来酰亚胺类化合物在结构修饰、合成和生物活性等方面的研究进行了总结和概述, 重点介绍了吲哚马来酰亚胺类化合物的合成方法, 讨论了各种合成方法的优缺点.  相似文献   

5.
A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.  相似文献   

6.
嘧啶类酪氨酸激酶抑制剂   总被引:1,自引:0,他引:1  
酪氨酸激酶在肿瘤的发生、发展过程中起着非常重要的作用,已成为肿瘤治疗的新靶点.嘧啶类化合物是蛋白酪氨酸酶抑制剂(PTKIs)中的一大类,这类化合物在临床前期研究中显示具有很好的抗肿瘤效应,一些已在临床上作为很有前景的抗癌药.本文按其结构类别介绍了近年来报道的嘧啶类酪氨酸激酶抑制剂.  相似文献   

7.
Aurora A is a cell cycle kinase linked to cancer. For the purpose of finding biologically active of novel compounds and providing new ideas for drug-design, we performed virtual screening in commercially available databases and got pyrazoleanthrone with promising inhibitory activity against Aurora A. Optimization of solvent accessible C7 position of pyrazoleanthrone made us get thirteen target compounds. These pyrazoleanthrone derivatives were evaluated by Aurora A inhibition assays in vitro. The results show that some target compounds could inhibit Aurora A kinase. Meanwhile, these title compounds were tested in vitro against hepatocellular carcinoma(HepG2) cells by the 3'-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) method, showing that most of them had inhibitory potency. The inhibition rate of compound 6h was about 80% against HepG2 cells, and the 1C50 value was 17.4 μmol/L, which would be considered for further study.  相似文献   

8.
Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are “flat” molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI–kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH–π interactions and π–π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.  相似文献   

9.
10.
唐建生 《化学通报》2007,70(6):471-475
激酶是当今的第二大靶标,其高选择性、强活性抑制剂的开发是医药化学的前沿领域。本文介绍了生物信息学——多序列比对、QSAR、药效团方法、同源模建、高通量虚拟筛选、分子动力学与自由能计算、QM-MM和计算系统生物学等计算机辅助设计方法在激酶抑制剂设计中的重要应用。  相似文献   

11.
Optimization of thienopyrimidinone derivatives as FGFR1 kinase inhibitors is being pursued. The present results confirm predictions of computational modeling that an aryl substituent can be introduced at the 2-position in structure 3. The substituent is anticipated to project deeper into the binding site and provide opportunities for enhanced activity and selectivity. The most potent analog reported herein, 13, has a 4-hydroxyphenyl substituent and yields an IC50 of 6 μM for inhibition of phosphorylation by FGFR1 kinase. It was also found that the western anisole-containing substituent in 3 can be replaced by a propionic acid group with no loss in potency and with potentially significant gains in pharmacologically relevant properties.  相似文献   

12.
新型喹唑啉类酪氨酸激酶化学抑制剂的设计与合成   总被引:1,自引:0,他引:1  
以6-氨基藜芦酸和醋酸甲脒为起始原料,合成了一系列4-位具有不同芳胺基团,6,7-位引入不同取代基的新型喹唑啉类酪氨酸激酶化学抑制剂,其结构经1H NMR表征.  相似文献   

13.
14.
Targeting and stabilizing distinct kinase conformations is an instrumental strategy for dissecting conformation‐dependent signaling of protein kinases. Herein the structure‐based design, synthesis, and evaluation of pleckstrin homology (PH) domain‐dependent covalent‐allosteric inhibitors (CAIs) of the kinase Akt is reported. These inhibitors bind covalently to a distinct cysteine of the kinase and thereby stabilize the inactive kinase conformation. These modulators exhibit high potency and selectivity, and represent an innovative approach for chemical biology and medicinal chemistry research.  相似文献   

15.
Despite extensive studies and the great variety of existing anticancer agents, cancer treatment remains an aggravating and challenging problem. Therefore, the development of novel anticancer drugs with a better therapeutic profile and fewer side effects to combat this persistent disease is still necessary. In this study, we report a novel series of benzothiazole and chromone derivatives that were synthesized and evaluated for their anticancer activity as an inhibitor of ATR kinase, a master regulator of the DDR pathway. The cell viability of a set of 25 compounds was performed using MTT assay in HCT116 and HeLa cell lines, involving 72 h incubation of the compounds at a final concentration of 10 µM. Cells incubated with compounds 2c, 7h and 7l were found to show viability ≤50%, and were taken forward for dose–response studies. Among the tested compounds, three of them (2c, 7h and 7l) showed higher potency, with compound 7l exhibiting the best IC50 values in both the cell lines. Compounds 2c and 7l were found to be equally cytotoxic towards both the cell lines, namely, HCT116 and HeLa, while compound 7h showed better cytotoxicity towards HeLa cell line. For these three compounds, an immunoblot assay was carried out in order to analyze the inhibition of phosphorylation of Chk1 at Ser 317 in HeLa and HCT116 cells. Compound 7h showed inhibition of pChk1 at Ser 317 in HeLa cells at a concentration of 3.995 µM. Further analysis for Chk1 and pChk1 expression was carried out in Hela cells by treatment against all the three compounds at a range of concentrations of 2, 5 and 10 µM, wherein compound 7h showed Chk1 inhibition at 2 and 5 µM, while pChk1 expression was observed for compound 7l at a concentration of 5 µM. To support the results, the binding interactions of the compounds with the ATR kinase domain was studied through molecular docking, wherein compounds 2c, 7h and 7l showed binding interactions similar to those of Torin2, a known mTOR/ATR inhibitor. Further studies on this set of molecules is in progress for their specificity towards the ATR pathway.  相似文献   

16.
The reliance of tumor cells on aerobic glycolysis is one of the emerging hallmarks of cancer. Pyruvate kinase M2 (PKM2), an important enzyme of glycolytic pathway, is highly expressed in a number of cancer cells. Tumor cells heavily depend on PKM2 to fulfill their divergent energetic and biosynthetic requirements, suggesting it as novel drug target for cancer therapies. Based on this context, we performed enzymatic-assay-based screening of the in-house phenolic compounds library for the identification of PKM2 inhibitors. This screening identified silibinin, curcumin, resveratrol, and ellagic acid as potential inhibitors of PKM2 with IC50 values of 0.91 µM, 1.12 µM, 3.07 µM, and 4.20 µM respectively. For the determination of Ki constants and the inhibition type of hit compounds, Lineweaver–Burk graphs were plotted. Silibinin and ellagic acid performed the competitive inhibition of PKM2 with Ki constants of 0.61 µM and 5.06 µM, while curcumin and resveratrol were identified as non-competitive inhibitors of PKM2 with Ki constants of 1.20 µM and 7.34 µM. The in silico screening of phenolic compounds against three binding sites of PKM2 provided insight into the binding pattern and functionally important amino residues of PKM2. Further, the evaluation of cytotoxicity via MTT assay demonstrated ellagic acid as potent inhibitor of cancer cell growth (IC50 = 20 µM). These results present ellagic acid, silibinin, curcumin, and resveratrol as inhibitors of PKM2 to interrogate metabolic reprogramming in cancer cells. This study has also provided the foundation for further research to validate the potential of identified bioactive entities for PKM2 targeted-cancer therapies.  相似文献   

17.
Fifty indolocarbazole series as cyclin-dependent kinase inhibitors (CDKs) are used to establish a threedimensional quantitative structure-activity relationship (3D QSAR) model based on docking conformations resulting from the Topomer comparative molecular field analysis (Topomer CoMFA). The statistic parameters show that the cross-validation (q2), the multiple correlation coefficient of fitting (r2), and external validation statistic (Qext2) are 0.953, 0.968, and 0.954, respectively. It is demonstrated that this Topomer CoMFA model has good stability and prediction ability. The methodology of the fragment-based drug design (FBDD) was also used to virtually screen new CDKs by the Topomer Search technology. Four similar substitutional groups selected from the ZINC database were added to the basic scaffold. As a result, 18 new CDKs with high activities were obtained. The template molecule and new designed compounds are used to study the binding relationship between the ligands and the receptor protein with Surflex-Dock. The docking results suggest good binding interactions of the designed compounds with protein. There are several hydrogen bondings between CDKs with amino acid residues of LYS33, LYS89, ASP86, LEU83, GLU81.  相似文献   

18.
Control of the cell cycle could be applicable in new approaches for cancer chemotherapy. The cyclin-dependent kinases (CDK's) and their corresponding complexes with cyclins are regulatory enzymes for which we have discovered a novel small molecule series of inhibitors, with potencies in the nanomolar range and good selectivity for the CDK's versus other kinases. We will discuss structure-based drug design efforts with crystal structures of complexes with certain CDK's. Cellular effects and some preliminary examination of in vivo cancer efficacy by these inhibitors will also be discussed.  相似文献   

19.
采用比较分子场分析(CoMFA)方法研究了一组嘧啶类衍生物酪氨酸激酶抑制剂活性与结构的关系.所得模型不仅能够很好地预报训练集中的化合物的活性,而且还可以准确地预报预报集中的化合物活性.通过分析分子场等值面图在空间的分布,可以观察到叠加分子周围的立体和静电特征对化合物活性的影响.  相似文献   

20.
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号