首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small‐angle X‐ray scattering by means of synchrotron radiation was used to study the interaction of κ‐ and ι‐carrageenan of different molar mass in the presence of the gel‐inducing ions, K+, with the ionic surfactants cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DPC). This interaction resulted in a more or less complete shrinking of the gel and in the formation of ordered periodic structures of the surfactant in conjunction with the carrageenan molecules. The influence of the polymer concentration for a given surfactant concentration, the content of surfactant for the same concentration of the polysaccharide, the molar mass, and the linear charge density of the polymer were all investigated. Decreasing the length of the alkyl chain of the surfactant, increasing the charge density of the polymer chain, and increasing the polymer concentration for the samples explored improved the ordering in the carrageenan–surfactant complexes. The structures of the κ‐carrageenan–CPC complexes were investigated as a function of temperature during reversible heating–cooling cycles, and it was shown that the addition of the surfactant lead to a more pronounced temperature stability of polymer network. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2851–2859, 2000  相似文献   

2.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

3.
The interactions of sodium dodecyl sulfate with a positively charged copolymer based on N-isopropylacrylamide (NIPAM) have been investigated in aqueous solution by turbidimetric and viscometric measurements. The copolymer contains mainly NIPAM and only 5 mol % of the charged comonomer [3-(methacryloylamino)propyl]-dimethyloctylammonium bromide. The polymer–surfactant complex is insoluble for mixture compositions near to the charge stoichiometry, while it exhibits lower critical solution temperature behavior for mixtures with an excess of polymer or surfactant. In the case of surfactant excess, the transition from an expanded coil to a globular state upon heating has been observed by viscometry. Received: 24 April 2000/Accepted: 30 May 2000  相似文献   

4.
This article describes the adsorption of sodium dodecyl benzene sulfonate, an anionic surfactant, on a hematite surface and that when the surface is preadsorbed with polyacrylamide. The adsorption of surfactant on a hematite surface has been studied through equilibration and during kinetics measurements at three pH levels, viz. 4.0, 7.0, 8.9. The surfactant adsorbs strongly on the hematite surface. The adsorption density at equilibrium as well as the rate of adsorption are dependent on the suspension pH. The maximum adsorption density has been observed at pH 4, which reflects strong adsorption of negatively charged sulfonate ions on the oppositely charged Fe2O3 surface (point of zero charge, 6.4). The adsorption density reaches its equilibrium value sooner in the case of an alkaline suspension and later in the case of acidic pH. The polymer surfactant interaction has been noticed in the present study and is also a function of pH. The hematite mineral when preadsorbed with the polymer draws fewer of the surfactant molecules at lower surface coverage (during the initial period of the kinetics measurement) irrespective of the pH. When the adsorption of the surfactant reaches a value which is near the equilibrium one, the pH effect is evident. In the case of acidic pH, the surfactant adsorbs more on the hematite surface when preadsorbed with the polymer compared to the bare surface. In the case of neutral or alkaline pH, however, the density of surfactant adsorption remains lower throughout the kinetics measurement when the surface is preadsorbed with the flocculant compared to the bare surface. The particles also remain flocculated till the end of the experiment, whereas at pH 4 the particles are deflocculated. In addition to pH, the electrostatic nature of the adsorbent and the presence of anionic surfactant have an influence on the flocculation–deflocculation phenomena. The polymer–surfactant interaction has been schematically represented. The surfactant is bound with polymeric chains as a combination of its monomeric form as well as in the form of association in the case of acidic media and in competition with polymer in the case of alkaline media. Received: 18 April 2000/Accepted: 2 August 2000  相似文献   

5.
The effect of the polymer molecular weight on the interaction between pentaethylene glycol n-octyl ether (C(8)E(5)) and poly(acrylic acid) (PAA) has been investigated by a combined experimental strategy including tensiometry, potentiometry, calorimetry, fluorescence quenching and intradiffusion (pulsed gradient spin echo-NMR) measurements. PAA samples with an average molecular weight varying in a wide range (M (w)=2000, 100,000, 250,000, and 450,000) have been considered. The measurements have been performed at constant polymer concentration (0.1% w/w) with varying surfactant molality. In all the considered systems, at low surfactant concentration, adsorption of surfactant monomers onto the polymer chain has been detected. At a C(8)E(5) molality (T(1)) independent of the PAA M (w), surfactant molecules start to aggregate, forming clusters to which the polymer co-participates. Above this concentration, the behavior of the system depends on M (w). In fact, if polymer samples with high molecular weight (M (w)100,000) are employed, all the added surfactant aggregates onto the polymer leading to the polymer saturation and, subsequently, to free micelles formation. Both saturation and free micellization occur at surfactant concentrations which are independent of the polymer molecular weight. C(8)E(5) aqueous mixtures containing PAA with low molecular weight (M (w)=2000) behaves differently, in that, above T(1), only a fraction ( approximately 20%) of the added surfactant molecules interact with the polymer, forming aggregates to which more than one PAA chain participate. In this case, C(8)E(5) free micellization occurs before polymer saturation. The experimental evidences have been interpreted in terms of the subtle balance between the various molecular interactions driving the surfactant-polymer aggregation.  相似文献   

6.
A series of miniemulsion systems based on styrene/azobisisobutyronitrile in the presence of poly(methyl methacrylate‐b‐2‐(dimethylamino)ethyl methacrylate) as a surfactant and hexadecane (HD) as a cosurfactant were developed. For comparison, a series of pseudoconventional emulsions also were carried out with the same procedure used for the aforementioned series but without the cosurfactant (HD). Both the droplet size and shelf life were also measured. Experimental results indicate that it is possible to slow the effect of Ostwald ripening and thereby produce a stable miniemulsion with the block copolymer as the surfactant and HD as the cosurfactant. In addition, the extent to which varying the surfactant concentration and copolymer composition could affect both the polymer particle size during the polymerization and the polymerization rate was examined. Variation in the polymer particle sizes during polymerization indicates that droplet and aqueous (micellar or both homogeneous) nucleation occurs in the miniemulsion polymerization. With the same concentration of the surfactant used in the miniemulsion polymerization, the polymerization rates of systems with M12B36 are faster than those of systems with M12B12. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1818–1827, 2000  相似文献   

7.
The intercalation of the twin-tailed amphiphilic dioctadecyldimethylammonium (DODA) ions in smectite clay minerals provides a well-defined supported bilayer system. Polymerisation of styrene in these robust model bilayers allows one to focus on the effect of the constrained medium on the polymerisation process and the polymer. Small-angle X-ray scattering analysis and differential scanning calorimetry data indicated that the polymerisation of styrene in DODA–montmorillonite leads to phase separation between polystyrene and the surfactant matrix. Received: 14 April 2000/Accepted: 19 June 2000  相似文献   

8.
We have examined the polymer/surfactant interaction in mixed aqueous solutions of cationic surfactants and anionic polyelectrolytes combining various techniques: tensiometry, potentiometry with surfactant-selective electrodes, and viscosimetry. We have investigated the role of varying polymer charge density, polymer concentration, surfactant chain length, polymer backbone rigidity, and molecular weight on the critical aggregation concentration (Cac) of mixed polymer/surfactant systems. The Cac of these systems, estimated from tensiometry and potentiometry, is found to be in close agreement. Different Cac variations with polymer charge density and surfactant chain length were observed with polymers having persistence lengths either smaller or larger than surfactant micelle size, which might reflect a different type of molecular organization in the polymer/surfactant complexes. The surfactant concentration at which the viscosity starts to decrease sharply is different from the Cac and probably reflects the polymer chain shrinkage due to surfactant binding.  相似文献   

9.
Rheological experiments were carried out on a 1 wt % hydrophobically modified alkali‐soluble emulsion (HASE) solutions at pH ∼ 9 in the presence of nonionic polyoxyethylene ether type surfactant (C12EO23). The low shear viscosity and dynamic moduli increases at c > cmc until they reach a maximum at a critical concentration, cm of approximately 1 mM (∼17 times the cmc of free surfactant) and then decrease. The dominant mechanism at cmc < c < cm is an increase in the number of intermolecular hydrophobic junctions and a strengthening of the overall associative network structure. Above cm, the disruption of the associative network causes a reduction in the number of junctions and strength of the overall network structure. The influence of C12EO23 on HASE before cmc could not be detected macroscopically by the rheological technique. However, isothermal titration calorimetry enables the determination of complex binding of surfactant to the polymer. Isothermal titration of C12EO23 into 0.1 wt % HASE indicates that the C12EO23 aggregation in water and 0.1 wt % HASE polymer solutions is entropically driven. A reduction in the critical aggregation concentration (cac) confirms the existence of polymer–surfactant interactions. The hydrophobic micellar junctions cause a decrease in the ΔH and ΔS of aggregation of the nonionic surfactant. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2019–2032, 2000  相似文献   

10.
Tauer et al. (Colloid Polym Sci 278:814–820, 2000) claim that the well-known Morton-Kaizerman-Altier (MKA) equation fails to describe experimental swelling data of polystyrene particles with toluene in the absence of free or adsorbed surfactant. They made modifications to the MKA equation to fit their own data; however, they were not able to fit the MKA data obtained in the presence of surfactant. In this work, based on the modified MKA equation, we propose a new approach to take into account the effect of surfactant on the swelling behavior of polymer latex particles such that with only one set of parameters, it is possible to fit the Tauer et al. data and to predict the MKA data. Comparisons of model against experimental data in presence and absence of surfactant are showed and discussed.  相似文献   

11.
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers’ thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.  相似文献   

12.
The interaction between pentaethylene glycol n-octyl ether (C8E5) and low-molecular-weight poly(acrylic acid) (PAA, M(w)=2000) in aqueous solution has been investigated by various experimental techniques at constant polymer concentration (0.1% w/w) with varying surfactant molality. Spectrofluorimetry, using pyrene as molecular probe, shows (i) the formation of surfactant-polymer aggregates at a surfactant molality (T(1)) lower than the critical micelle concentration (cmc) of C8E5 in water and (ii) the formation of free micelles at a surfactant molality (T(2)) slightly higher than the cmc. Fluorescence quenching measurements indicate that the presence of PAA induces a lowering of the C8E5 aggregation number. Calorimetry confirms spectrofluorimetric evidence; in addition, it shows the presence of weak interactions below T(1) between monomeric surfactant molecules and the polymer chains. Tensiometry shows that, above T(1), only a low fraction of surfactant molecules interact with the polymer and that free micelle formation occurs before polymer saturation. The peculiarities of the interaction between surfactants and low-molecular-weight polymers have been discussed.  相似文献   

13.
The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accu-mulating structure showed that, though hydrophobic properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfactant and one kind of multiple hydroxyl compound were similar to those of one kind of surfactant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from sim-ulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl com-pounds were, the easier interactions with isocyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a referenced theoretical basis was provided for practical optimal selection and experimental preparation of α-olefin drag reducing polymer particles suspension isolation agent.  相似文献   

14.
Composite natural rubber (NR) based latex particles were prepared using the heterocoagulation technique. A nonionic surfactant (Tween 80) whose molecules bear poly(ethylene oxide) (PEO) was adsorbed on polychloroprene (CR) latex particles and allowed to form complexes between PEO and indigenous surfactant (protein–lipid) on the NR particle surface. The heterocoagulated NR/CR–Tween particles produced were characterised by particle size, zeta-potential and glass-transition temperature measurements and the data indicated the presence of CR–Tween on the outer layer of the composite polymer particles. The results agreed well with the better oil resistance of films cast from heterocoagulated latex when compared with that of the NR film. Received: 22 August 2000 Accepted: 8 January 2001  相似文献   

15.
In this contribution, the phase behavior of a surfactant/polymer mixed system is related to the adsorption of a complex derived from the mixture onto a target surface. The phase map for the system sodium dodecyl sulfate (SDS, a model anionic surfactant)/pDMDAAC (poly(dimethyl diallyl ammonium chloride), a cationic polymer) shows behavior very typical of surfactant/oppositely charged polyelectrolyte mixtures. The predominant feature is a broad, two-phase region in the phase map which lies asymmetrically around the 1:1 stoichiometry of surfactant charge groups to polymer charge units. The overall controlling principle driving the phase separation is charge compensation. Excess of polymer yields an isotropic solution, as does a great excess of surfactant (termed resolubilization). The phase separating in the SDS/pDMDAAC system is characterized by a positive zeta-potential when the polymer is in excess and a negative zeta-potential when the surfactant is in excess. The surface charge properties of the precipitated phases are essentially identical to those of target particles (ground borosilicate glass) dispersed at the same approximate position in the phase map, suggesting that the surfactant/polymer complex at the precipitation boundary is the same as that adsorbing onto the pigment particle. This conclusion is confirmed by depletion studies which allow the polymer adsorption density to be determined. For polymer-rich systems, essentially all of the surfactant adsorbs along with the polymer via a high-affinity isotherm with a plateau coverage of about 0.8 mg polymer/m (2). Surfactant-rich systems adsorb with a similar affinity, despite the mismatch of the complex charge matching that of the particle surface. Once adsorbed, these complexes are not readily removed by rinsing, though complexes adsorbed from SDS-rich systems will lose excess surfactant upon extreme dilution. Over a wide range of surfactant-rich compositions, from 1:1 stoichiometry out toward the resolubilization zone, a chemical analysis reveals that the surfactant/polymer precipitate species consists of a 1:1 charge complex with the addition of about 0.25 mol of surfactant/mol of complex. Resolubilization of these sparingly soluble species is achieved simply by dilution to below their solubility limit.  相似文献   

16.
测定了水溶性高分子聚乙二醇(PEC1000、PEG2000、PEG6000)和聚乙烯吡咯烷酮(PVP-K30、PVP-K90)对三种非离子表面活性剂十二烷基聚氧乙烯聚氧丙烯醚C12H25O(EO)m(PO)nH(LS36,m=3,n=6;LS5,m=4,n=5;LS54,m=5,n=4)浊点的影响.结果表明,聚乙二醇(PEG)可使三种表面活性剂水溶液浊点降低;而聚乙烯吡咯烷酮(PVP)随其浓度增加,表面活性剂溶液浊点先升高然后又下降;浊点下降程度与聚合物浓度和分子量有关.  相似文献   

17.
The polymer-micelle model, formerly established by Cabane, is revised to develop a new viscosity equation to describe the dependence of dilute solution viscosity on polymer concentration in PEG/SDS aqueous solutions. Two parameters inthe new equation were proposed to characterize the influence of the polymer solution viscosity on the added surfactant. The viscosity data of polyethylene glycol (PEG) solutions containing sodium dodecyl sulfate (SDS) were measured by the Ubbelohde dilution viscometer and the new equation proved to be in good agreement with the experimental data. Copyright 2000 Academic Press.  相似文献   

18.
The effects of polymer charge and surfactant composition were examined on the complex-precipitation (CP) and phase-separation (PS) regions for cationic cellulose (CC), sodium poly(oxyethylene laurylsulfate) and lauroylamidopropyl-N,N-dimethylammonioacetate and Na2SO4. The solubilized state of the complexes was studied by light scattering in the one-phase, 1φ, solution in the postprecipitation region. The cationic charge on the CC and the anionic charge on the surfactant greatly affected the CP and PS regions, to change the domain of the 1φ solution. The relative scattering intensity of the complex, ΔI complex , was high near the CP region and decreased with increasing surfactant and salt concentrations in the 1φ solution. The presence of solubilized complexes of polymers cross-linked with surfactant micelles was suggested near the CP region. The cross-linking of the complexes decreased with increasing surfactant and salt concentrations, producing increased micelle binding and charge shielding. The shrinkage of the complexes was considered to bring about the boundary on which ΔI complex is equal to the relative scattering intensity of polymer alone in the 1φ solutions. Separation of the complexes and the transition of the solution into the PS region were suggested at high concentrations over the boundary. Received: 30 September 2000 Accepted: 7 May 2001  相似文献   

19.
The thermal conductivity and the cellular structure as well as the matrix polymer morphology of a collection of chemically crosslinked low‐density closed cell polyolefin foams, manufactured by a high‐pressure nitrogen gas solution process, have been studied. With the aid of a useful theoretical model, the relative contribution of each heat‐transfer mechanism (conduction through the gas and solid phases and thermal radiation) has been evaluated. The thermal radiation can be calculated by using a theoretical model, which takes into account the dependence of this heat‐transfer mechanism with cell size, foam thickness, chemical composition, and matrix polymer morphology. A simple equation, which can be used to predict the thermal conductivity of a given material, is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 993–1004, 2000  相似文献   

20.
The statistical product distribution for a linear polydisperse polymer of finite molecular weight was included into the statistical analysis for a system undergoing random chain scission showing the effect of volatilization of species other than monomer. Two sets of equations were derived. One set is for the nonvolatile fraction; the other is for the volatile fraction. Within each set there are three equations, one for the number of polymer molecules, the second for the molar (or number) fraction, and the third for the weight fraction of polymer molecules containing a specific number of repeat units. As degradation proceeds the polydispersity index should converge to a value of 1 rather than 2, which has been reported previously. The expected effects of polydispersity, number‐average degree of polymerization, and volatility were treated individually, and we determined that the molecular weight of a polymer has no theoretical influence on the product distribution. As for the effect of volatility, we determined that only the volatile product distribution would change. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3690–3696, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号