首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray and optical diffraction methods have been used to study the changes in supramolecular structure, degree of orientation, and drawratio of the material in the 0–650-µm range for polypropylene samples obtained by molding. Using a microtribometric technique, the influence of these factors on the frictional properties of the polymer have been elucidated.Institute of Mechanics of Metal-Polymer Systems, Academy of Sciences of the Belorussian SSR, Gomel'. Translated from Mekhanika Polimerov, No. 2, pp. 202–206, March–April, 1976.  相似文献   

2.
An analytical relationship between the thermooxidation rate constants and mechanical properties of composite materials under isothermal and dynamic conditions is obtained. With the example of epoxy-based composites, it is shown that the kinetic parameters of thermooxidation can be used to predict the internal stresses and breakdown voltage of coatings. The calculated drop in the impact toughness exceeds its experimental value by 30%, while the calculated relative breaking elongation is 1.5–2 times greater than the experimental one. A considerable decrease in these indices is observed at a loss of 0.1–1 wt.% of volatile products of thermooxidation. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 237–248, January–February, 2000.  相似文献   

3.
4.
For a consistent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain-rate effects on the mesoscale, is required. Therefore, a modelling approach using numerical homogenization techniques is applied to predict the effective nonlinear material behaviour of the composite based on the finite element simulation of a representative volume element (RVE). In this RVE suitable constitutive relations account for the material behaviour of each constituents. While the reinforcing glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law is applied to represent the strain-rate dependent, inelastic deformation of the matrix material. In order to analyse the influence of the nonlinear matrix material behaviour on the global mechanical response of the composite, effective stress-strain-curves are computed for different load cases and compared to experimental observations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The effect of temperature, adhesion time, and surface treatment of a reinforcing filler on the mechanical properties of thermoplastic basalt plastics based on a high-density polyethylene and a copolymer of 1,3,5-trioxane with 1,3-dioxolan is investigated. An extreme dependence for the adhesive strength in a thermoplastic-basalt fiber system is established and its effect on the mechanical properties of basalt plastics and the influence of the adhesion contact time on the adhesive strength in the system are clarified. The surface modification of basalt fibers in acidic and alkaline media intensifies the adhesion of thermoplastics to them owing to a more developed surface of the reinforcing fibers after etching. It is found that the treatment in the acidic medium is more efficient and considerably improves the mechanical properties of basalt plastics.  相似文献   

6.
The mechanical characteristics of flax fibers were optimized by using the NaOH treatment process to improve the properties of composite materials. Shrinkage of the fibers during this treatment had a significant effect on the structure and, as a result, on the mechanical properties of the fibers and the composites based on them. Due to the higher mechanical strength and stiffness of flax fibers after NaOH treatment under isometric conditions, the strength and stiffness of composites in general increase. Further, NaOH treatment leads to a rougher surface morphology, as shown, e.g., for jute fibers, compared with the surface of untreated fibers without improved fiber/matrix adhesion.  相似文献   

7.
A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.  相似文献   

8.
The influence of the content of carbon nanofillers (multi-and single-wall nanotubes) on the thermophysical properties of epoxy nanocomposites was investigated on the temperature range from −150 to 150°C. A “plateau” was found to exist in the concentration dependence of thermal conductivity on the concentration interval from 0.1 to 1.0 wt.% carbon nanotubes (CNTs). The thermal conductivity of the CNT composites exceeded that of pure epoxy resin by about 40%. A further increase in CNT content de creased the conductivity, owing to increasing interfaces between the two phases and the additional thermal resistance caused by phonon scattering on them. It is found that the temperature interval of transition of the composite from a glassy to a viscoelastic state greatly depends on the filler type and concentration. There exists a critical concentration at which a drop in the glass-transition temperature by 30% can be observed. The reason is the undercure of binder as a result of interaction between CNTs and epoxy macromolecules, which reduces the cross-linking density of structure of the polymer. Translated from Mekhanika Kompozitnykh Materialov, Vol. 44, No. 5, pp. 697–708, September–October, 2008.  相似文献   

9.
We obtain an exact, closed, self-consistent system of equations for describing nanotubes that takes electron and oscillation subsystems in the collective variables into account. Collective excitations in nanotubes are described by the quantum numbers n, m, and k, where n − 1 is the number of radial modes, m is the number of azimuthal modes, and k − 1 is the number of longitudinal modes of the wave function. The results obtained approximate the experimental data better than those obtained by the method of linear combinations of atomic orbitals. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 149, No. 1, pp. 127–144, October, 2006.  相似文献   

10.
11.
A finite element study is conducted to determine the thermal response of a widely used glass reinforced plastic panel exposed to fire. This study is performed based on a formulation developed previously by the authors and improved by including the moisture and temperature-dependent thermal properties and a newly developed time-dependent non-linear mixed boundary condition at the unexposed surface of the panel. In addition, the influence of non-zero final resin mass is considered according to a recently performed thermal gravimetric analysis. In order to derive the appropriate element equations, a mixed explicit–implicit Bubnov–Galerkin finite element approach is adopted. Results of this study are presented for a standard, 10.9 mm, thickness of single-skinned polyester-based glass reinforced plastic panel and comprise temperature profiles, density distributions and moisture profiles. Comparisons are made between the predicted results and those obtained experimentally. The predicted temperatures agreed with the experimental results with an average difference of 21.41°C. A simple comparison of the present value with that of the authors’ previous model, 29.66°C, indicates a considerable improvement of 38.53% in the fire-performance prediction of the material.  相似文献   

12.
In this paper, the second order statistics of post buckling response of functionally graded materials plate (FGM) subjected to mechanical and thermal loading with nonuniform temperature changes subjected to temperature independent (TID) and dependent (TD) material properties is examined. Material properties such as material properties of each constituent’s materials, volume fraction index are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear kinematic using modified C0 continuity. A direct iterative based C0 nonlinear finite element method (FEM) combined with mean centered first order perturbation technique (FOPT) proposed by last two authors for the composite plate is extended for Functionally Graded Materials (FGMs) plate with reasonable accuracy to compute the second order statistics (mean and coefficient of variation) of the post buckling load response of the FGM plates. The effect of random material properties with amplitude ratios, volume fraction index, plate thickness ratios, aspect ratios, boundary conditions and types of loadings subjected to TID and TD material properties are presented through numerical examples. The performance of outlined present approach is validated with the results available in literatures and independent Monte Carlo simulation (MCS).  相似文献   

13.
The mechanical properties and effects in fibrous composite materials are compared. The materials are based on the same matrix (EPON-828 epoxy resin) and differ in the type of fibers: Thornel-300 carbon microfibers, graphite microwhiskers, carbon zigzag nanotubes, and carbon chiral nanotubes. Two material models are considered: a model of elastic medium (macrolevel model) and a model of elastic mixture (micro-nanolevel model). Mechanical constants of 40 materials (4 types + 10 modifications) are calculated and compared. The theoretical ultimate compression strength along the fibers is discussed. The effects accompanying the propagation of longitudinal waves in the fiber direction are investigated.  相似文献   

14.
基于产品差别化假设,建立双寡头动态微分博弈模型,比较碳税和许可交易以及总量控制3种气候政策的经济环境效应.研究发现,不同气候政策对两国的经济效应不同.进一步研究还发现,在企业产品差别化竞争时,从碳排放流量来看,碳税政策和许可交易政策与总量控制政策之间没有严格的优劣之分;碳排放存量对碳税政策最敏感.从碳存量对政策的边际影响来看,许可交易政策与总量控制政策是相同的,而碳税政策与之相反.当两国生产的产品完全同质时,从均衡碳排放流量和碳排放存量来看,许可交易政策最优,总量控制政策次之,碳税政策最差.若政府单纯以控制碳排放量为目的,许可交易政策是最佳选择.  相似文献   

15.
From the results of an analysis of the viscoelastic characteristics of semi-interpenetrating polymer networks (semi-IPNs) that are based on a crosslinked polyurethane and a linear polystyrene and are formed in the presence of compatibilizing additives (oligourethane dimethacrylate and ethylene glycol monomethacrylate), their damping ability is est mated. Such parameters as the tangent of mechanical loss (tan δ) at the glass-transition temperature, the temperature interval of effective damping (where tan δ > 0.3), and the loss area under the loss modulus vs. temperature plots are used as the criteria of damping ability. It is shown that the introduction of the compatibilizing additives to the semi-IPNs extends the interval of their effective damping temperature. By varying the composition of the material and the amount of the compatibilizing additives, it is possible to realize a purposeful selection of vibration-damping materials for solving specific technological problems. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 545–558, July–August, 2006.  相似文献   

16.
We first analyze the integrated density of states (IDS) of periodic Schrödinger operators on an amenable covering manifold. A criterion for the continuity of the IDS at a prescribed energy is given along with examples of operators with both continuous and discontinuous IDS. Subsequently, alloy-type perturbations of the periodic operator are considered. The randomness may enter both via the potential and the metric. A Wegner estimate is proven which implies the continuity of the corresponding IDS. This gives an example of a discontinuous “periodic” IDS which is regularized by a random perturbation.  相似文献   

17.
The effect of water on the mechanical properties (tensile modulus, ultimate tensile strength, tensile strain, and specific work at break) of both chemically treated and untreated composites based on a recycled low-density polyethylene and linen yarn production waste is analyzed. It is found that three water sorption-desorption cycles change the tensile properties of both the materials irreversibly. This effect is considered as the result of partial fracture of the fiber-matrix interface. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 839–848, November–December, 2007.  相似文献   

18.
A classical problem of nonholonomic system dynamics—the motion of a sphere on the inside of a rough vertical cylinder—is extended to rolling friction. The case study is modelled in independent coordinates. Due to the nonholonomic constraints imposed on the sphere, the governing equations arise as a set of differential-algebraic equations. The results of numerical simulations show the transition of the sphere from a sinusoid path on the vertical cylinder surface to a fall with slip. The physics of the ‘paradoxical’ motion is explained in detail.  相似文献   

19.
Deformed carbon fibers are investigated, and their failure model is proposed based on the Sierpinski set and the hypothesis of two — brittle and viscous — fracture modes, whose existence is confirmed by examples of a correlation between the mechanical strength and elastic modulus of the fibers. For the first time, a multifractal diagram is obtained, which allows one to justify the classification of carbon fibers into brittle and inelastic ones.  相似文献   

20.
The effect of the amount of sorbed water on the mechanical properties (tensile modulus, tensile strength, unit work of fracture, and characteristic strains) of composites based on a recycled low-density polyethylene, both unmodified and modified with diphenylmethane diisocyanate (DIC), is an a lyzed by statistical methods. The results of tensile tests are found to depend on the amount of sorbed water considerably. The elastic modulus, the unit work of fracture, and the characteristic strains correlate linearly with the amount of water. It is found that the elastic modulus drops after the sorption of water, but then, during the desorption process, it is restored gradually and reaches its initial value after a 30-day drying. This is explained by the plasticizing effect of water on composite materials containing hydrophilic natural fibers. DIC improves the interfacial interaction of the fiber-matrix interface and slows down the desorption of water. The investigations of the main deformational and strength characteristics of the unmodified and modified systems showed that the ad verse effect of water completely disappeared after a 30-day drying. The same conclusion, with a 95% probability, can be drawn from the results of an analysis of variance (ANOVA). __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 626–638, September–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号