首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a simple strategy for designing a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs) based on solid-phase extraction (SPE) using nanosized Pt intercalated Ni/Al layered double hydroxides (labeled as NanoPt-LDHs). By assembling NanoPt with LDHs together, the resulting NanoPt-LDHs are highly efficient to capture OPs. It dramatically facilitates the enrichment of OPs onto their surface and realizes the sensitive stripping voltammetric detection of methyl parathion (MP) as a model of OPs. The stripping analysis shows highly linear over MP concentration ranges of 0.001–0.15 and 0.3–1.0 μg mL? 1 with a detection limit of 0.6 ng mL–1 (S/N = 3). The combination of NanoPt, LDHs, SPE, and square-wave voltammetry (SWV) provides a fast, simple, and sensitive electrochemical method for OPs.  相似文献   

2.
A sensitive electrochemical stripping voltammetric method for analyzing organophosphate (OP) compounds was developed based on solid-phase extraction (SPE) at zirconia (ZrO2) nanoparticles modified electrode. ZrO2 nanoparticles were proved as a new sorbent for SPE of OP pesticides. Because of the strong affinity of ZrO2 for the phosphoric group, nitroaromatic OPs can strongly bind to the ZrO2 nanoparticle surface. The combination of SPE with square-wave voltammetry (SWV) provided a fast, sensitive, and selective electrochemical method for nitroaromatic OP compounds using methyl parathion (MP) as a model. The stripping response was highly linear over the MP range of 0.003–2.0 μg/mL, with a detection limit of 0.001 μg/mL. The fast extraction ability of ZrO2 nanoparticles makes it promising sorbent for various solid-phase extractions.  相似文献   

3.
Yinghui Bian  Haibing Li 《Talanta》2010,81(3):1028-45
In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC6-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC6 as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC6-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80 μM, with a detection limit of 4.0 nM (S/N = 3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.  相似文献   

4.
Miaomiao Gu 《Talanta》2009,80(1):246-1985
Gold nanoparticles (AuNPs) were assembled on the surface of polystyrene (PS) and polyaniline (PANI) core-shell nanocomposite (PS@PANI) for the immobilization of HL-60 leukemia cells to fabricate a cell electrochemical sensor. The immobilized cells exhibited irreversible voltammetric response and increased the electron transfer resistance with a good correlation to the logarithmic value of concentration ranging from 1.6 × 103 to 1.6 × 108 cells mL−1 with a limit of detection of 7.3 × 102 cells mL−1 at 10σ. This biosensor was simple, low cost and disposable, which implied that the PS@PANI/Au composites can regard as the potential applications for clinical applications.  相似文献   

5.
In situ mercury film electrode produced in the presence of thiocyanate has been shown extremely useful for highly sensitive adsorptive stripping voltammetric measurements of atrazine down to sub-μg L−1 level. Operational parameters have been optimized and the stripping voltammetric performance has been investigated using square wave scans. The adsorptive stripping response is linear over the range of 0.5-60 μg L−1 atrazine, with a detection limit of 0.024 μg L−1. The method has been applied to the determination of atrazine in soil and water samples.  相似文献   

6.
A new kind of signal amplification strategy based on ferrocene (Fc) incorporated polystyrene spheres (PS-Fc) was proposed. The synthesized PS-Fc displayed narrow size distribution and good stability. PS-Fc was applied as label to develop immunosensors for prostate specific antigen (PSA) after the typical sandwich immunoreaction by linking anti-PSA antibody (Ab2) onto PS-Fc. After the fabrication of the immunosensor, tetrahydrofuran (THF) was dropped to dissolve PS and release the contained Fc for the following stripping voltammetric detection. PS-Fc as a new electrochemical label prevented the leakage of Fc and greatly amplified the immunosensor signal. In addition, the good biocompatibility of PS could maintain the bioactivity of the antibodies. The response current was linear to the logarithm of PSA concentration in the range from 0.01 ng mL−1 to 20 ng mL−1 with a detection limit of 1 pg mL−1. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results.  相似文献   

7.
Lakshmi D  Prasad BB  Sharma PS 《Talanta》2006,70(2):272-280
Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4 V versus Ag/AgCl for 120 s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (≤+0.3 V) HMDE. The creatinine was preconcentrated and instantaneously oxidised in MIP layer giving DPCSV response in the concentration range of 0.0025-84.0 μg mL−1 [detection limit (3σ) 1.49 ng mL−1]. The sensor was found to be highly selective for creatinine without any response of interferents viz., NaCl, urea, creatine, glucose, phenylalanine, tyrosine, histidine and cytosine. The non-imprinted polymer-modified electrode did not show linear response to creatinine. The imprinting factor as high as 9.4 implies that the imprinted polymer exclusively acts as a recognition element of creatinine sensor. The proposed procedure can be used to determine creatinine in human blood serum without any preliminary treatment of the sample in an accurate, rapid and simple way.  相似文献   

8.
The design and construction of a highly selective voltammetric sensor for metronidazole by using a molecularly imprinted polymer (MIP) as recognition element were introduced. A metronidazole selective MIP and a nonimprinted polymer (NIP) were synthesized and then incorporated in the carbon paste electrodes (CPEs). The sensor was applied for metronidazole determination using cathodic stripping voltammetric method. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CPE. Some parameters affecting the sensor response were optimized and then the calibration curve was plotted. Two dynamic linear ranges of 5.64 × 10−5 to 2.63 × 10−3 mg L−1 and 2.63 × 10−3 to 7.69 × 10−2 mg L−1 were obtained. The detection limit of the sensor was calculated as 3.59 × 10−5 mg L−1. This sensor was used successfully for metronidazole determination in biological fluids.  相似文献   

9.
Shen XC  Jiang LF  Liang H  Lu X  Zhang LJ  Liu XY 《Talanta》2006,69(2):456-462
A novel method for the determination of 6-mercaptopurine (6MP) has been developed based on fluorescence enhancement of Au nanoparticles (AuNPs). The fluorescent AuNPs with mean diameter of ∼15 nm were synthesized in aqueous solution, exhibiting the stable maximum emission at 367 nm, under the excitation at wavelength of 264 nm. The AuNPs self-assembly with 6MP were characterized with transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. The results revealed that the surface attachment through versatile binding sites of S10, N3, N9 and N7 atoms in 6MP produced the interparticle coupling and formed aggregates of AuNPs. As a result, the fluorescence emission enhancement was significantly observed upon AuNPs self-assembly with 6MP. The fluorimetric determination under optimal conditions indicated that 6MP could be quantified in good linearity range of 6.35 × 10−8 to 3.05 × 10−7 M, with a low detection limit of 4.82 × 10−10 M. The relative standard deviation (n = 11) was 1.8% at 2.54 × 10−8 M 6MP concentration level. The proposed method was successfully applied for the determination of 6MP in spiked human urine. The probable fluorescence enhancement mechanism was also discussed there.  相似文献   

10.
The paper reports a highly sensitive enzyme free electrochemical immunoassay (EFEIA) for the detection of herbicide chlorsulfuron. The assay is based upon oxidative gold nanoparticle (GNP) dissolution in an acidic solution. The consequent release of large amounts of gold (Au) metal ions after dissolution of gold nanoparticles tagged to antibody leads to the development of sensitive stripping voltammetry based immunoassay. The detection is made possible by the reduction of Au3 + ions at the screen printed electrode surface followed by metal analysis by using the square wave voltammetry technique. The sensitivity of chlorsulfuron detection by competitive assay procedure was 6.7 pg mL− 1 for EFEIA in marked contrast to optical detection using Standard ELISA procedure that gives a sensitivity of 4.97 ng mL− 1.  相似文献   

11.
A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production.  相似文献   

12.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

13.
In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL−1 with an extremely low detection limit down to 0.61 pg mL−1. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.  相似文献   

14.
A colorimetric sensor has been developed in this work to sensitively detect α-glucosidase activity and screen α-glucosidase inhibitors (AGIs) utilizing unmodified gold nanoparticles (AuNPs). The sensing strategy is based on triple-catalytic reaction triggered by α-glucosidase. In the presence of α-glucosidase, aggregation of AuNPs is prohibited due to the oxidation of cysteine to cystine in the system. However, with addition of AGIs, cysteine induced aggregation of AuNPs occurs. Thus, a new method for α-glucosidase activity detection and AGIs screening is developed by measuring the UV–vis absorption or visually distinguishing. A well linear relation is presented in a range of 0.0025–0.05 U mL−1. The detection limit is found to be 0.001 U mL−1 for α-glucosidase assay, which is one order of magnitude lower than other reports. The IC50 values of four kinds of inhibitors observed with this method are in accordance with other reports. The using of unmodified AuNPs in this work avoids the complicated and time-consuming modification procedure. This simple and efficient colorimetric method can also be extended to other enzymes assays.  相似文献   

15.
(+)-Catechin (CAT) was considered as a polyphenolic compound abundantly contained in plants. It exerts protective effect against cancer, inflammatory and cardiovascular diseases. These protective effects are mainly attributed to its antioxidative activity by scavenging free radicals. Therefore, the need of simple, selective and sensitive monitoring of (+)-catechin in commercial drinks and biological fluids is crucial. A new selective and sensitive voltammetric quantification of (+)-catechin was investigated at low cost hydroxypropyl-beta-cyclodextrin modified carbon paste sensor in acidic solutions. The constructed sensor was treated in simple and fast manner to increase its stability for catechin determination. The effect of solution and instrumental parameters was investigated by using osteryoung square-wave anodic voltammetry (OSWAV) at pH 2.20 and differential pulse cathodic voltammetry (DPCV) at pH 4.40 in 0.10 M Britton-Robinson buffer. Acidic solutions were chosen to increase the stability of (+)-catechin, reduce its adsorption on the sensor surface and increase the selectivity of proposed method. Cyclic voltammetry (CV) was used to elucidate the electrochemical mechanism of catechin at the modified electrochemical sensor. A linear range up to 7.20 and 4.20 μg mL−1 of catechin was achieved in anodic and cathodic voltammetry, respectively. The method gave reproducible and reliable results with 1.50 (g mL−1 catechin (S.D. 0.062). Limit of detection of 0.12 and 0.30 ng mL−1 and limit of quantification (LOQ) of 1.10 and 2.80 ng mL−1 were easily achieved using anodic and cathodic voltammetry, respectively. Selectivity of the proposed procedure was estimated by testing recovery and adding the most interfering metal ions and/or organic compounds. The proposed method was applied successfully to selective determination of catechin in some commercial drinks like tea, cocoa and coffee with acceptable recovery range (98-102%). The extraction of catechin was rather simple, making it suitable for studies with a large number of commercial samples. Furthermore, the application to urine samples without pretreatment was achieved and statistically confirmed at 95% confidence level. It was easy to analyze catechin in urine down to 0.55 ng mL−1.  相似文献   

16.
Halosulfuron methyl, a fast-acting herbicide and is absorbed into leaf tissue within 1-2 days and translocated through the vascular system, interrupting amino acid production within the plant, can be detected using glassy carbon electrode the technique of adsorptive stripping voltammetry. The adsorptive stripping voltammetric behavior of halosulfuron methyl was investigated in pH range 1.0-10.0. Halosulfuron methyl was irreversibly oxidized at a glassy carbon electrode. Electrochemical techniques including adsorptive stripping voltammetry and cyclic voltammetry were employed to study the oxidation mechanism. The experimental parameters such as the accumulation potential, accumulation time and frequency were optimized. The linear range, detection limit and quantification for halosulfuron methyl were evaluated by adsorptive stripping voltammetry. Under the optimized conditions, the peak current is linear to halosulfuron methyl concentration in the range 4.1-50.0 μg mL−1. Limit of detection and limit of quantification were 1.23 and 4.10 μg mL−1, respectively. The interference of inorganic species and other some pesticides on the voltammetric response have been studied. The applicability to spiked soil and natural water was described and the recoveries for the standards added are 103.8% and 108.2%, respectively. The method is successfully applied for the determination of halosulfuron methyl in commercial formulation.  相似文献   

17.
In this work, a sandwich-type electrochemical immunosensor for simultaneous sensitive detection of prostate specific antigen (PSA) and free prostate specific antigen (fPSA) is fabricated. Gold nanoparticles (AuNPs) modified Prussian blue and nickel hexacyanoferrates nanoparticles were firstly prepared, respectively, and then decorated onion-like mesoporous graphene sheets (denoted as Au@PBNPs/O-GS and Au@NiNPs/O-GS) as distinguishable signal tags to label different detection antibodies. Subsequently, streptavidin and biotinylated alkaline phosphatase (bio-AP) were employed to block the possible remaining active sites. With the employment of the as prepared nanohybrids, the dual catalysis amplification can be achieved by catalysis of the ascorbic acid 2-phosphate to in situ produce AA in the presence of bio-AP, and then AA was further catalyzed by Au@PBNPs/O-GS and Au@NiNPs/O-GS nanohybrids, respectively, to obtain the higher signal responses. The experiment results show that the linear range of the proposed immunosensor for simultaneous determination of fPSA is from 0.02 to 10 ng mL−1 with a detection limit of 6.7 pg mL−1 and PSA is from 0.01 to 50 ng mL−1 with a detection limit of 3.4 pg mL−1 (S/N = 3). Importantly, the proposed method offers promise for rapid, simple and cost-effective analysis of biological samples.  相似文献   

18.
An innovative approach for sensitive and simple electrochemical detection of non-electroactive organophosphorus pesticides (OPs) was described in this report. The novel strategy emphasized the fabrication of an oxime-based sensor via attaching pralidoxime (PAM) on graphene quantum dots (GQDs) modified glassy carbon electrode. The introduction of GQDs significantly increased the effective electrode area, and then enlarged the immobilization quantity of PAM. Thus, the oxidation current of PAM was obviously increased. Relying on the nucleophilic substitution reaction between oxime and OPs, fenthion was detected using PAM as the electroactive probe. Under optimum conditions, the difference of oxidation current of PAM was proportional to fenthion concentration over the range from 1.0 × 10−11 M to 5.0 × 10−7 M with a detection limit of 6.8 × 10−12 M (S/N = 3). Moreover, the favorable detection performance in water and soil samples heralded the promising applications in on-site OPs detection.  相似文献   

19.
Y?ld?z Uluda? 《Talanta》2010,82(1):277-383
A simple and sensitive sensor method for cancer biomarkers [prostate specific antigen (PSA) and PSA-alpha 1-antichymotrypsin (ACT) complex] analysis was developed, to be applied directly with human serum (75%) by using antibody modified quartz crystal microbalance sensor and nanoparticles amplification system. A QCM sensor chip consisting of two sensing array enabling the measurement of an active and control binding events simultaneously on the sensor surface was used in this work. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions before applying to serum samples. Extensive interference to the QCM signal was observed upon the analysis of serum. Different buffer systems were then formulated and tested for the reduction of the non-specific binding of sera proteins on the sensor surface. A PBS buffer containing 200 μg mL−1 BSA, 0.5 M NaCl, 500 μg mL−1 dextran and 0.5% Tween 20, was then selected which eliminated the interfering signal by 98% and enabled the biomarker detection assay to be performed in 75% human serum. By using Au nanoparticles to enhance the QCM sensor signal, a limit of detection of 0.29 ng mL−1 PSA and PSA-ACT complex (in 75% serum) with a linear dynamic detection range up to 150 ng mL−1 was obtained. With the achieved detection limit in serum samples, the developed QCM assay shows a promising technology for cancer biomarker analysis in patient samples.  相似文献   

20.
In this work, ionic liquid–graphene nanosheets (IL–GNs) were synthesised and used as an enhanced material for sensitive detection of methyl parathion (MP) by electrochemical method. IL–GNs were characterised by UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray photo-electron spectroscopy (XPS), Fourier transform Infrared (FT-IR) spectroscopy and Raman spectroscopy, which confirmed that IL was successfully covered on the surface of GNs. Significantly, due to the coupling of excellent properties of GNs and IL, the IL–GNs-modified glassy carbon electrode (IL–GNs/GCE) showed higher signals for MP response than the GNs/GCE and bare GCE. At the IL–GNs/GCE, the peak currents increase linearly with the concentration of MP in the range of 5.3 ng/mL to 2.6 μg/mL with the detection limit of 1.1 ng/mL, which was better than other enzyme-based and enzymeless sensors. The IL–GNs-based electrochemical sensor was also successfully demonstrated for the detection of water sample with satisfactory results. Furthermore, the proposed electrochemical sensor exhibited satisfied stability and reproducibility. The simple sensing platform can be extended to detect other organophosphate pesticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号