首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shape and porosity of hematite particles, produced from a forced hydrolysis reaction of acidic FeCl3 solution, were controlled by using Pluronics as nonionic surfactants (0–4 wt.%). Pluronics possess a nominal formula of (PEO) x –(PPO) y –(PEO) x . The effect of Pluronics with low hydrophilicity (PEO contents were less than 50 mol%) was small and provided spherical particles the same as that of the system without Pluronics (control system). However, Pluronics with higher hydrophilicity (PEO contents were over 50 mol%) gave ellipsoidal hematite particles. This effect on the particle morphology was enhanced by an increase in their molecular weight. On the other hand, the Pluronics possessing an opposite nominal formula [(PPO) x –(PEO) y –(PPO) x ] exhibited no effect on the particle shape; it only depressed phase transformation from ?-FeOOH to hematite. Not only the morphology but also the pore size of hematite particles was controlled from nonporous to mesoporous by using Pluronics. The N2 adsorption experiment and t-plot curve analysis revealed that the hematite particles changed from mesoporous to microporous by an increase in the concentration of Pluronics. On the other hand, in the presence of very low amounts of Pluronics molecules (0.1 wt.%), nonporous hematite particles were produced via strong aggregation of PN particles by their hydrogen bonding between hydroxyl and PEO or PPO groups. The dynamic light scattering measurement for the system with Pluronics clarified the existence of polynuclear (PN) particles with a hydrodynamic particle diameter (D a) of ca. 40 nm after these were aged for 6 h. The size of PN particles remained constant at ca. 40 nm during aging time of 12 h~3 days, but the scattering intensity was decreased. This decrease in the scattering intensity reveals that the number of PN particles is reduced by aggregation. The transmission electron microscope, inductively coupled plasma atomic emission spectroscopy, and total organic carbon analysis measurements employed on the systems produced for ellipsoidal particles elucidated that the formation of ellipsoidal hematite particles is attributed to the adsorption of Pluronics on the surfaces of PN and growing hematite particles.  相似文献   

2.
Summary: Hydroxyapatite (HAp)-polyvinyl alcohol (PVA) nanocomposite film containing Li+ was designed as a solid polymer electrolyte. A composite was prepared by reacting Ca(OH)2 with H3PO4 in the presence of PVA which is denatured in order to have the carboxyl group, and a LiN(CF3SO2)2 was added. HAp particles were commonly formed in the shape of spindles (long axis ca. 80 nm and short axis ca. 25 nm). The obtained nanocomposite film, in which HAp particles were dispersed uniformly, is transparent, flexible and drawable. Its ionic conductivity is about 10−3 S/m at room temperature. This value is very large. This high ionic conductivity is considerable on the basis of the dynamic percolation theory.  相似文献   

3.
The effects of polyvinyl alcohol (PVA) molecules on the porosity of disk-like hematite particles produced from the forced hydrolysis reaction using two kinds of PVA molecules with a well-defined molecular weight and a high degree of saponification (PVA-105 and PVA-124) were investigated. It is evident from TEM and field-emission scanning electron microscope (FE-SEM) measurements that a fraction of particles lost their spherical habit and acquired a disk-like shape by the addition of small amounts of both PVA molecules, though no difference in the particle size between the two PVA systems was observed. FE-SEM images of the particles revealed that the disk-like hematite particles are made up of small cluster particles with a diameter of approx. 5–10 nm. The disk-like particles produced a rather lower concentration for PVA-124 with a higher molecular weight than that for PVA-105 with a lower molecular weight. This fact was due to the large number of hydroxy groups in PVA-124 molecules than in PVA-105; hydroxy groups act as adsorption sites onto polynuclear (PN) primary particles and cause pronounced effects on the formation and structure of particles during the aggregation of PN particles. It was clarified from N2 adsorption measurements at 77 K that the porosity of the hematite particles can be controlled from microporous to mesoporous by changing the concentrations of PVA-105 and PVA-124, as was classified into three groups, i.e., groups 1, 2, and 3. The control particles produced without PVA molecules, classified into group 1, showed type IV adsorption isotherms, and only the voids produced between spherical particles were detected as mesopores. On the other hand, the particles produced with small amounts of PVA produced micropores as classified in group 2. In this group, the particles produced uniform micropores after being outgassed at 100–200 °C. The hematite particles produced with high concentrations of PVAs were classified into group 3. In this group, the particles after being outgassed at lower temperature produced micropores with diameters between 0.6 and 2.0 nm, though the micropores in the particles changed to mesopores after outgassing at 300 °C. This mesopore formation was attributed to the elimination of the PVA-adsorbed layer by evacuation at 300 °C, i.e., the large voids residing in the disk-like hematite particles make the particles mesoporous. This mesopore formation was further confirmed by adsorption experiments of C6H6(benzene) and CCl4 molecules at 298 K.  相似文献   

4.
A 0.5 dm3 aqueous solution of 0.1 M FeCl3 dissolving 1 wt% poly(vinyl alcohol) (PVA) was treated hydrothermally in a stainless steel autoclave at various temperatures (T h=110–200 °C). Highly ordered red corpuscle-like hematite particles around 2 m in diameter were produced after aging the solution at T h=110 °C for 7 days, though large numbers of spherical PVA microgels around 2–4 m in diameter were produced together with the red corpuscle-like particles at T h120 °C. The number of red corpuscle-like hematite particles decreased but that of spherical PVA microgels increased with increasing T h, leading to the proposal that the method carried out in the present study will become a new synthetic method of polymer microgels. The ferric ions acted as a cross-linking agent to make PVA insoluble in water. The red corpuscle-like hematite particles produced at T h=110 °C had high specific surface areas and showed high mesoporosity. The mesoporosity appeared to be more pronounced after evacuating the particles above 300 °C. The diameter of the mesopores after evacuation above 300 °C ranged from 2 to 20 nm, with a maximum at around 5–6 nm. The H2O and N2 adsorption experiments revealed that there are no ultramicropores in the particles. The H2O and CCl4 adsorption experiments further disclosed that the surface hydrophobicity of the particles is low even though PVA molecules remain after evacuation of the particles at 100–400 °C. Furthermore, the micropores produced after evacuation of the particles at 400 °C exhibited a high size restriction effect, i.e., the micropores produced were accessible to H2O (diameter 0.253 nm) and N2 (diameter 0.318 nm) molecules but not to CCl4 (diameter 0.514 nm).  相似文献   

5.
Ti(IV)-substituted calcium hydroxyapatite (TiHap) particles were prepared by aging Ca(OH)2, TiCl4, and sodium triphosphate (sodium tripolyphosphate, Natpp: Na5P3O10) mixed solution at 100 °C for 18 h. The ellipsoidal secondary TiHap particles with ca. 100~150 nm in length composing by aggregation of small ellipsoidal primary particles with ca. 20 nm in length were produced at atomic ratio of Ti/(Ca+Ti) [XTi]≦0.2. The in situ IR spectra of these TiHap particles exhibited very small bulk OH? band at 3,570 cm?1. This result indicated that the TiHap particles were formed by aggregation of fine primary particles and OH? ions along with c-axis in the primary particles were disordered. The TiHap particles with Ca/P atomic ratio larger than theoretical value of 1.67 did not exhibit surface P–OH groups at 3,659 and 3,682 cm?1. The diffuse reflectance UV spectra of TiHap particles revealed that these particles have a UV absorption property, especially fabricated at XTi?=?0.1. The particles prepared at XTi?=?0.6 and 0.8 were amorphous and nanoparticles with 5~10 nm in diameter, but those precipitated at XTi?=?1.0 were poorly crystallized anataze-type TiO2 nanoparticles.  相似文献   

6.
The shape and porosity of hematite particles, produced from a forced hydrolysis reaction of acidic FeCl3 solution, were controlled by using polyethylene amine nonionic surfactants (Surfonamine®; 0~10 wt.%). Surfonamine® possesses a nominal formula of CH3-(PEO) x -(PPO) y -NH2. Surfonamine with the highest total amine content (PEO contents were over 76 mol%, L-100) gave spherical particles, but those with lower total amine contents (L-200, L-207 and L-300) produced pseudocubic hematite particles. The pH value of the system with 10 wt.% of L-100 rose up to 8.49. With this pH rise, the diameter of the spherical particles was dramatically decreased. This fast particle formation was explained by the aggregation of very fine 6-line ferrihydrite particles produced at their high pH conditions. The uniformity of pseudocubic hematite particles produced with L-200, L-207 and L-300 were improved by increasing their concentrations. Since the pH values of these systems before aging were controlled between 2.03 and 2.35, it was presumed that the Surfonamine molecules acts as a buffer agent and attained pseudocubic particles. From the calculation of crystallite size, all the pseudocubic hematite particles were regarded as a polycrystal as well as the large spherical hematite particles produced without Surfonamine (control system). This polycrystallinity of the particles provided evidence that the particles are grown by aggregation of polynuclear (PN) primary particles. Not only the morphology but also the pore size of hematite particles was controlled from nonporous to microporous by using Surfonamines. The N2 adsorption experiment and t-plot curve analysis revealed that the pseudocubic hematite particles have uniform micropores. The XRD, transmission electron microscope, inductively coupled plasma atomic emission spectroscopy and total organic carbon analysis measurements employed on the systems produced for pseudocubic particles elucidated that the pseudocubic crystal habit was formed by the specific adsorption of chloride ions and/or chloroferric complexes to the {012} faces, restraining the growth process through stacking of ultrafine PN particles in the direction of normal to the {012} faces but strictly restricting the growth and mutual fusion of PN ones. The uniform micropores could be produced between the PN particles. The uniform pseudocubic particles were found to be an effective photocatalytic material than the spherical particles due to their large size with uniform flat crystal faces.  相似文献   

7.
The use of homoionic organic clays and mixed-ion organic/inorganic clays modified by di- or triamines (Jeffamines), which are being used as epoxy resin curing agents, in the synthesis of polymer nanocomposites has been studied in this work. Our aim is to enhance polymer crosslinking and interfacial adhesion in the nanocomposite structure by utilizing the functionality of the di/triamines on the surface of clay nanolayers and by reducing the organic modifier via formation of homostructured mixed-ion organic/inorganic clays. The results show that the use of homoionic organic clays exchanged with relatively short chain di- or triamines and mixed-ion organic/inorganic clays partially exchanged (ca. 35%) with long chain diamines resulted in intercalated structures with enhanced thermo-mechanical properties (Young's Modulus, Storage Modulus). On the other hand, homoionic organic clays exchanged with long chain diamines and triamines resulted in exfoliated nanocomposites but with compromised mechanical properties due to the plasticizing effect of the long chain amine modifiers.  相似文献   

8.
New carbamate based ionic liquids were prepared using different primary amines such as aliphatic, aryl-, di-, and triamines in the presence of organic superbase and CO2 atmosphere. Many of the prepared compounds can be considered as ionic liquids with low melting points. The reaction conditions based on solvent, type of base, pressure, reaction time, and temperature were optimized and discussed. Tetramethylguanidine (TMG) can be envisaged as an alternative base in order to obtain high yields and purities of carbamate salts specially when primary amines and polyamines are used.The reversibility studies using n-octylamine/DBU and n-octylamine/tetramethylguanidine systems were performed. These studies showed that tetramethylguanidine can lead to more reversible systems while DBU can lead to more stable salts.  相似文献   

9.
The shape, porosity, and surface hydrophilicity of hematite particles formed from a forced hydrolysis reaction of acidic FeCl3 solution were controlled by using a trace of polymers (0.001 and 0.003 wt%). The spherical particles were produced on the systems with polyvinyl alcohol (PVA) and polyaspartic acid (PAS). In the case of polyacryl amide (PAAm), slightly small spherical particles were precipitated at 0.003 wt%. However, polyacrylic acid (PAAc) and poly-γ-glutamic acid (PGA) gave ellipsoidal particles. This morphological change on hematite particles depended on the order of functional groups of polymers as –OH<–CONH2<–COOH<–COOH and ⟩C=O, corresponding to the order in extent of polymer molecules for complexation to Fe3+ ions and adsorption onto particle surface. Accompanying this order, the hematite particles produced were changed from less porous to microporous. On the other hand, only the system with 0.003 wt% of PAAm produced mesoporous hematite particles. Choosing the kinds of polymers also controlled the ultramicroporosity and surface hydrophilicity of the particles.  相似文献   

10.
Well‐developed crystals of [Pt(NH3)4](HCO3)2 are employed as template for the synthesis of silicon dioxide nanotubes (SiO2‐NTs). Silicon dioxide, which is produced by a sol‐gel reaction, coats the surface of these crystals and builds up the nanotube walls. In the final step, the Pt‐salt fibers are thermally decomposed and auto‐reduced to metallic Pt nanoparticles. Scanning and transmission electron microscopy (SEM and TEM) investigations of the product confirm the formation of silicon dioxide nanotubes in high yield. The tube walls consist of amorphous silicon dioxide. The tube length generally is 0.5 — 3 μm, while the thickness varies in two distinct ranges: thick tubes have a diameter of 100 — 500 nm and thin ones of approximately 50 nm. Most of the NTs are filled with Pt particles, but others, typically the larger ones with open tube ends, obviously are empty. Presumably, open ends cause the observed Pt loss. In closed SiO2‐NTs, Pt forms as ca. 10 nm large particles in the tube core and as 1 — 2 nm large particles inside the tube walls.  相似文献   

11.
Uniform nanoparticles and hollow microspheres of hematite (??-Fe2O3) were obtained via a hydrothermal method by using iron (III) chloride as a precursor. The effects of reactant concentration, reaction time and temperature on the morphology of the samples were studied. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and superconducting quantum interference device magnetometer (SQUID) measurement. ??-Fe2O3 nanoparticles show a superparamagnetic behavior and the average size of the spherical particles was around 60 nm. However, hollow microspheres show a normal ferromagnetic behavior at room temperature with remanent magnetization and coercivity of 0.2482 emu/g and 2,516 Oe, respectively, and their average diameter was around 2 ??m. The effects of reactant concentration and reaction temperature on the formation of the products were investigated. The experimental results reveal that the magnetic properties of hematite can be tuned by controlling the morphology.  相似文献   

12.
We consider the ζ-potential and the effective charge of spherical polyelectrolyte brushes (SPBs) in aqueous solution in the presence of trivalent europium ions. The SPB consists of a polystyrene core of ca. 250 nm diameter onto which long chains of the strong polyelectrolyte poly(styrene sulfonate) are grafted (contour length: 82 nm). At low concentration of EuCl3 the chains are stretched to nearly full length. If the concentration of the trivalent ions is raised, the surface layer of the polyelectrolyte chains collapses. The ζ-potential of the SPB is calculated from the electrophoretic mobilities measured at different concentrations of EuCl3. At the collapse, ζ decreases by the partial neutralization of the charges by the trivalent ions. The experimental ζ-potential thus obtained agrees with the theoretical surface potential Ψtheo calculated for the effective shear plane by a variational free energy model of the SPB.  相似文献   

13.
A new and useful class of aromatic amines, based on multichlorinated benzenes and polyphenyls, has been developed. The amines are prepared by reacting the alkali metal salt of p-aminophenol with the chloroaromatics under nucleophilic substitution reaction conditions. Oligomeric amines can be obtained by condensing, e.g., the dialkali salt of bisphenol A and the alkali metal salt of p-aminophenol with the chloroaromatics. The products are mixtures of mono-, di-, and triamines, as a result of the complex functionalities of the chloroaromatics employed. Unique features of the amines include: (1) flame-retarding characteristics; (2) markedly reduced amine reactivity (compared with aniline); (3) thermal stability; (4) good solubility in the usual organic solvents.  相似文献   

14.
We have studied the molecular self-assembly tendency of C60(> DPAF-C9) dyad, C60(> DPAF-C9)2 triad, and C60(> DPAF-C9)4 pentads in a solvent-dependent and concentration-dependent manner. The evaluation was performed by the particle-size measurements on molecular assemblies in either toluene or CS2 using the dynamic light scattering technique. As a result, we observed a strong bimodal particle size distribution in most cases of the samples in both nonpolar solvents. In the instance of C60(> DPAF-C9) dyad, the first group of small nanoparticles exhibited a particle diameter size of 3.0–4.0 nm in good agreement with the estimated long axis length of C60(> DPAF-C9) (~ 2.7 nm), using 3D molecular modeling technique. Similar observation of a bimodal particle size distribution was detected on C60(> DPAF-C9)4 pentads in toluene with a small nanoparticle diameter size of ~ 8.0 nm fitting well with the estimated dimension length of ~ 9.8 nm for loosely packed 3–6 C60(> DPAF-C9)4 molecular assemblies. Furthermore, the tendency of forming large aggregation particles in a particle diameter of more than 4.0 μ m was significantly enhanced at a concentration of 1.0 × 10–2 M.  相似文献   

15.
The magnetic NiFex nanowires were prepared via template-guided electrodeposition. Anodized nanoporous aluminum was used as a template. The pore density and dimensions of alumina templates can be controlled by anodization conditions. Magnetic nanorods (or nanowires) with various aspect ratios were prepared by controlling the electrodeposition time. SEM and TEM micrographs revealed the wire and rod shape morphologies with 50 nm in diameter and 1.5 ~ 10 μm in length. Elemental analysis and ESCA studies suggested that NiFe3 magnetic alloy was formed. The X-ray diffraction pattern indicates that all the nanowires are stabilized in a BCC structure with a [1 1 0] texture oriented along the long axis of the nanowires. The magnetic measurement showed no hysteresis loops for the whole aspect ratios of the nanowires. Nevertheless, the magnetization is more temperature sensitive for nanowires with lower aspect ratio. This is caused by the fact that the easy magnetization axis is always parallel to the long axis of the nanowires.  相似文献   

16.
A titanium dioxide sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. The sol was prepared by a process where HCl was added to a gel of hydrated titanium oxide to dissolve it. The resulting aqueous titanic acid solution was heated to form titanium dioxide sol. The effects of preparation parameters were investigated. TiCl4 was slowly added to distilled water at 5°C. Aqueous solution of sodium hydroxide was added to adjust the pH of the system to 8–12. After aging for a period of time, the peptized sol was filtered and sufficiently washed. The filtered cake was repulped in water. Hydrochloric acid was slowly added to the solution with stirring. After condensation reaction and crystallization, a transparent sol with suspended TiO2 was formed. XRD results show that the crystalline phase was anatase. The suspended TiO2 particles were rhombus primary particles with the major axis ca. 20 nm and the minor axis ca. 5 nm. The TiO2 particles prepared at pH 8 had the largest surface area of 141 cm3/g and it was microporous. The compositions of the solution which yielded the smallest suspended TiO2 particles were TiO2:HCl (35% HCl) = 1:1 (molar ratio), concentration of TiO2 = 10%. Hydroxypropyl cellulose with viscosity of 150–400 cps was added as a dispersant. The sol was excellent in dispersibility and long-term stability. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The dip-coating on glass can be less than three times to have one monolayer TiO2. The transparent TiO2 thin film had strong hydrophilicity after being illuminated by UV light.  相似文献   

17.
ZnO:Al (0–10 at% Al) films and powders were produced using acac-modified methoxy-ethoxide precursors, obtained from Zn(C2H5)2 and Al4(OPr i )12. The conversion to oxide powders was monitored with TGA and DSC, and the phase development was investigated with XRD, FT-IR spectroscopy, and TEM-EDS. The gels obtained by air-hydrolysis contained ca 0.5 acac/(Zn + Al) and a small amount of water and hydroxyls. All residual groups were removed to yield ZnO:Al by heating to ca 400°C. The powders obtained at 400 and 500°C were elementally homogeneous, and consisted of hex-ZnO:Al as ca 3–5 (10 at% Al) or 20–30 (3 at% Al) nm sized crystalline particles. Spin-coating on quartz, Si/SiO2, and window glass, followed by heating to 500°C resulted in 150–200 nm thick films of hex-ZnO:Al. 500 nm thick films were obtained by repeating the deposition and heat-treatment twice. The films were visually very clear and the measured transmittance high over the 400–800 nm range (91–93% at 800 nm) for ca 300 nm thick films.  相似文献   

18.
X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.  相似文献   

19.
通过液固界面上的溶解-沉淀耦合反应在Ba(NO3)2乙醇-水溶液中实现了毒重石晶型的碳酸钡在方解石(CaCO3)晶体基底上的外延生长, 得到碳酸钡的单晶微米锥阵列. 碳酸钡微米锥的长轴平行于毒重石晶体的[001]方向,同时也与方解石基底[001]晶向相同, 其俯视图为六边形, 具有近似的六方对称性. 随反应时间的增加, 外延生长形成的碳酸钡微米锥的尺寸增加, 但其轴径比逐渐减小. 通过改变乙醇-水混合溶剂中的乙醇含量或者Ba(NO3)2浓度也能调控碳酸钡晶体的尺寸和形貌. 随着混合溶剂中乙醇含量与Ba(NO3)2浓度的提高, 溶液中BaCO3的过饱和度增加, 通过外延生长在方解石的(104)表面形成的BaCO3阵列结构的密集程度逐渐增加, 尺寸逐渐减小, 形貌从微米锥逐渐转变为微米柱状结构. 经过对晶化过程及毒重石和方解石晶体结构分析,提出了在方解石表面外延生长形成的毒重石微米锥单晶阵列结构的形成过程机理: 该过程为界面溶解-沉淀耦合反应的过程,方解石的溶解和毒重石的外延生长过程同时进行, 由于两种晶体在方解石基底的(104)晶面与(001)晶面上具有中高度错配值, 毒重石晶体在方解石的这两个晶面上发生Volmer-Weber型的外延生长, 逐渐形成在靠近基底处包覆有方解石台阶的毒重石微米锥单晶阵列结构.  相似文献   

20.
Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560–700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25–35 nm) was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号