首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of papers has been devoted to questions of gas bubble dynamics in viscoeiastic liquids. Of these papers we mention [1–4]. The radial oscillations of a gas bubble in an incompressible viscoeiastic liquid have been studied numerically in [1, 2] using Oldroyd's model [5]. Anexact solution was found in [3], and independently in [4], for the equation of small density oscillations of a cavity in an Oldroyd medium when there is a periodic pressure change at infinity. The analysis of bubble oscillations in a viscoeiastic liquid is complicated by properties of limiting transitions in the rheological equation of the medium. These properties are of particular interest for the problem under investigation. These properties are discussed below, and characteristics of the small oscillations of a bubble in an Oldroyd medium are investigated on the basis of a numerical analysis of the exact solution obtained in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 82–87, May–June, 1976.The authors are grateful to V. N. Nikolaevskii for useful advice and for discussing the results.  相似文献   

2.
Recently there has arisen increased interest in the study of radiative heat transfer between geometrically simple systems, both as autonomous problems and as elements of more complex problems.Problems of this kind have been treated by many authors [1–111 who have considered gray, diffusely emitting and absorbing boundaries and gray nonscattering media. In most cases these investigations were restricted either to the derivation of approximate formulas for the net radiative flux, without an exact analysis of the temperature distribution in the layer [5–7], or to numerical computation [1–4], In the latter case, with the exception of [8], which contains a numerical analysis for the case of optical symmetry, no attempt was made to analyze the effect of the optical properties of the boundaries on the temperature field in the layer.These papers can be divided into two groups according to the method of analysis used. The first group includes papers based on the integral equations of radiative transfer, with the corresponding integral analytical methods [1, 2], Similar in nature are [3, 4] which use the slab method, applicable to electrical-analog computation, as well as a recent paper [8] based on probability methods.The second group of papers [5–7] is based on the so-called differential methods. Of particular interest is [7], which develops these methods to an advanced degree. In several papers the problem of radiative transfer is analyzed in conjunction with more complex problems (cf., e.g. [10, 11]).In the present work we shall attempt to carry out an approximate analytical study of problems connected with radiative heat transfer in a plane layer of an absorbing, emitting, nonscattering gray medium with temperature-independent optical properties. The layer is bounded by two parallel, diffusely emitting and diffusely reflecting, isothermal, gray planes.The paper presents the fundamental formulation of the problem, which consists in: (a) the determination of the net heat flux on the basis of given temperature distribution (direct formulation), and (b) the determination of the temperature distribution on the basis of given distribution of the net radiative heat source per unit volume and boundary temperatures (inverse formulation). The analysis is based on integral methods appropriate to the integral equations which represent the net total and hemispherical radiation flux densities [12].The author would like to thank S. S. Kutateladze for his interest in this work.  相似文献   

3.
For the law of flow in a porous medium with limiting gradient studied previously in [1], an exact solution is found for the problem formulated in [2] of the plane steady motion of an incompressible fluid in a channel with a rectangular step. Particular cases of the solution obtained are given; these represent the solutions of the problem of flow past a broken wall and of motion from a point source in a strip.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 76–78, January–February, 1985.  相似文献   

4.
The propagation of spherical waves in an isotropie elastic medium has been studied sufficiently completely (see, e.g., [1–4]). it is proved [5, 6] that in imperfect solid media, the formation and propagation of waves similar to waves in elastic media are possible. With the use of asymptotic transform inversion methods in [7] a problem of an internal point source in a viscoelastic medium was investigated. The problem of an explosion in rocks in a half-space was considered in [8]. A numerical Laplace transform inversion, proposed by Bellman, is presented in [9] for the study of the action of an explosive pulse on the surface of a spherical cavity in a viscoelastic medium of Voigt type. In the present study we investigate the propagation of a spherical wave formed from the action of a pulsed load on the internal surface of a spherical cavity in a viscoelastic half-space. The potentials of the waves propagating in the medium are constructed in the form of series in special functions. In order to realize viscoelasticity we use a correspondence method [10]. The transform inversion is carried out by means of a representation of the potentials in integral form and subsequent use of asymptotic methods for their calculation. Thus, it becomes possible to investigate the behavior of a medium near the wave fronts. The radial stress is calculated on the surface of the cavity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 139–146, March–April, 1976.  相似文献   

5.
The problem of the flow of a viscoplastic medium with linear viscosity, resulting from the motion of a rigid cylinder of arbitrary cross section has been considered by Oldroyd [1]. In [2] the author finds several exact particular solutions of this problem. Problems of a similar nature have also been examined in [3–4], In the following we consider the formation of stagnant zones in viscoplastic media.  相似文献   

6.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

7.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

8.
The magnitude of the elasticity tensor of a comparison body remains unclarified if we use a singular approximation [1] to estimate the effective values of the elasticity tensor. Below we will use a parametrix method [2] to determine the first approximation of the random component of the deformation tensor and the effective values of the elasticity tensor, and will also compare the exact solution for one particular heterogeneous and a previously used approximation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 171–175, January–February, 1976.  相似文献   

9.
Questions of the interaction between solid and elastic structures with an ideal fluid which are associated with the initial stage of the impact and penetration of bodies in the fluid were considered in [1–4]. Results are presented below of an analysis of a central impact on a solid weightless plate which is on the surface of a compressible fluid. The impact velocity is much less than the speed of sound in the medium. Computations are performed by a finite-difference Lagrange method according to a program for plane motions of a continuous medium [5] by using a volume artificial viscosity of Neumann-Richtmayer type [6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 143–145, May–June, 1978.  相似文献   

10.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

11.
An exact analytic solution of the problem of diffraction of a plane acoustic wave on a cone of arbitrary aperture angle was obtained and studied in [1]. For the case of spherical wave diffraction on a cone a formula is known [2] which relates the solutions of the spherical and plane wave diffraction problems. This study will employ the results of [1, 2] to derive and investigate an exact analytical solution of the problem of diffraction of a spherical acoustic wave on a cone of arbitrary aperture angle. Results of numerical calculations will be presented and compared with analogous results for a plane wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 200–204, March–April, 1976.The author is indebted to S. V. Kochura for her valuable advice.  相似文献   

12.
Solutions of boundary-value problems of two-dimensional flow in a porous medium are obtained on the basis of the theory of axisymmetric generalized analytic functions [1,2] and conversion formulas [3] for a broad class of strata whose conductivity changes abruptly along second-order curves. The singular points of these functions model arbitrary two-dimensional flows. In space the solutions describe the axisymmetric flow in porous media whose homogeneity interfaces are second-order surfaces of revolution. The solutions obtained are applied to new problems associated with environmental protection and the nonpolluting operation of water intakes under complex geological conditions.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 120–128, January–February, 1993.  相似文献   

13.
A study is made of the nonlinear problem of the flow without separation of a perfect weightless liquid past a plate near the free surface. This problem was first posed by Gurevich [1]. At present, there are only a general solution to the problem [2–4] and some numerical calculations [5], which have been made under definite restrictions and are inadequate for detailed information about the interaction between the free surface and the plate. In the present paper, a complete investigation of the problem is given. Convenient computational formulas are obtained together with asymptotic expansions of them, and detailed calculations are made for all depths of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 158–162, January–February, 1980.  相似文献   

14.
A study is made of the isothermal flow of multicomponent mixtures in a porous medium, accompanied by phase transitions, interphase mass exchange, and change in the physicochemical properties of the phases [1–3], It is assumed that at each point of the flow region, phase equilibrium is established instantaneously and the flow velocities of the separate phases conform to Darcy's law. Approximate solutions of problems of displacing oil by high-pressure gas were obtained in [1]. By generalizing the theory developed in [4], a study is made in [5] of the structure of the exact solutions of the problems of the flow of three-component systems which describe the displacement of oil by different reactants (gases, solvents, micellar solutions). The numerical solutions of the problems of multicomponent system flow are considered in [2, 3, 6, 7]. This paper presents a numerical method which is distinguished from the well-known ones [2, 3, 6, 7] by the following characteristics. The flow equations are approximated by a completely conservative finite-difference scheme of the implicit pressure-explicit saturation type, the calculation being carried out using Newton's method of iteraction with spect to both the pressure and the composition of the mixture. The minimum derivative principle [8] is used in the approximation of the divergence terms of the equations. The phase equilibrium is calculated using the equation of state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 101–110, July–August, 1985.  相似文献   

15.
A study is made of the three-dimensional problem of determining the parameters of motion of a gaseous chemically active medium near a caustic, the envelope curve of the rays of the wave fronts in the geometrical acoustics approximation. Two limiting processes whereby perturbations propagate [1] can be distinguished, depending on the ratio of the reaction time of the chemical reaction to a macroscopic time: a quasifrozen process and a quasiequilibrium process. The problem is considered in a linear formulation in [2-6] in the absence of viscosity, thermal conductivity, and chemical reactions. Nonlinear equations are derived in [7–10] for an arbitrary nondissipative medium near a caustic. In the present paper Ryzhov's method [1] is used to derive the nonlinear equations of motion of the medium for both types of process. The pressure distributions near and on the caustic itself are found for an incident step wave. The effect of the chemical reaction on how the flow parameters are distributed in the vicinity of the caustic is ascertained. Equations are derived for an inhomogeneous initially moving fluid near a caustic. A nonlinear equation containing a highest derivative of third order is obtained in the vicinity of the caustic for the case of special media in which the limiting velocities of sound in the mixture at rest are close in value. It is shown that the solution of the corresponding linear equation is expressed in the form of a quadrature from the solution for a chemically inert medium and contains oscillations near the wave fronts.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 81–91, March–April, 1977.  相似文献   

16.
The exact solution of the problem of the deflection of an anisotropic plate weakened by an aperture is known only for the case in which the aperture has the shape of a circle or an ellipse [1, 2]. An exact solution has not been derived for any other aperture shapes. Approximate methods [3–6] which are widespread for the case of multiply connected anisotropic plates [7] are applied to the determination of the bending moments in an anisotropic plate near an aperture differing little from an elliptical or circular one.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 168–177, September–October, 1977.  相似文献   

17.
A successive approximation method is used to solve the self-similar problem of gas flow accompanying a shock wave propagated through a polytropic gas of variable density. The method is based on a special choice of independent variables and the use of Whitham's approximation [1] as the initial approximation for the motion of the discontinuity. A first approximation for the self-simulation index is calculated which is in good agreement with exact values.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–72, September–October 1970.The author wishes to thank S. V. Fal'kovich for suggesting this problem and for his help in the work.  相似文献   

18.
Several theoretical [1–3] and experimental [4] studies have been made of the diamagnetic perturbations during expansion of a conducting material in a magnetic field. These studies have related either to superconducting media [1], or to a strong magnetic field which has a considerable effect on the motion of the medium [2], or to a weakly ionized media, in which the effects of field variation in the medium can be neglected [3]. In the following we examine the expansion of a substance with finite conductivity in a weak (having no effect on the motion of the medium) magnetic field with account for the effects of field attenuation within the expanding matter. This occurs in the diagnostics of the state of the matter of a spark at a laser focus on the basis of diamagnetic induction signals [4]. The relations obtained in the following appear to be applicable for estimating the diamagnetic properties of meteor trails.The method of solution of this problem may be of some interest; therefore, in the following the solution is obtained by several techniques for different basic geometries.  相似文献   

19.
In this paper we shall consider the transport of a dynamically neutral impurity in a porous medium containing random inhomogeneities. The original versions of the equations for the mean impurity concentration [1, 2] were based on the hyphothesis that the random motions obeyed the Markov principle, use being made of the diffusion equations of A. N. Kolmogorov. Later [3, 4] the method of perturbations was used to study the complete system of equations for the impurity concentration and random filtration velocity in the case of a constant, nonrandom porosity; after an averaging process this yields a generalized equation for the average concentration. In the limiting cases of small- and large-scale inhomogeneities in the permeability of the medium, the basic integrodifferential equation may be, respectively, reduced to parabolic and hyperbolic equations of the second order. In the present analysis we shall use the perturbation method to study the transport of an impurity by a flow when the filtration velocity of the latter fluctuates around inhomogeneities in the permeability field, the porosity of the medium in which the flow is taking place also constituting a random field, correlating with the field of permeability. We shall derive equations for the average concentration and should formulate the corresponding boundary-value problems for these equations; we shall also calculate the components of the dispersion tensor and shall consider the equilibrium sorption of an impurity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 65–69, July–August, 1976.The author is grateful to A. I. Shnirel'man for useful discussions.  相似文献   

20.
The flows around complex three-dimensional bodies by an ideal fluid are computed by methods [1–3] using approximation of the surface by a set of plane elements. A layer of surface singularities, whose intensity is found by solving a system of linear algebraic equations of very high order, is distributed continuously over each element. Evaluation of the system coefficients and its solution require significant machine time expenditures on powerful electronic computers. If in the method of [2] the total system of equations is separated successfully into several subsystems by simplifications and an approximate solution of the problem is obtained more rapidly than by the method in [1], then the same author practically used the method in [1] to design specific fuselages in [3]. A method [4] developed for a fuselage is expanded in this paper to design a wing-fuselage combination. This method turns out to be less tedious, without being inferior in accuracy, by being different from the method in [1] in the means of solving the fundamental integral equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 110–115, May–June, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号